मराठी

The Radius of the Base of a Cone is Increasing at the Rate of 3 Cm/Minute and the Altitude is Decreasing at the Rate of 4 Cm/Minute. the Rate of Change of Lateral Surface When the Radius = 7 Cm and - Mathematics

Advertisements
Advertisements

प्रश्न

The radius of the base of a cone is increasing at the rate of 3 cm/minute and the altitude is decreasing at the rate of 4 cm/minute. The rate of change of lateral surface when the radius = 7 cm and altitude 24 cm is

पर्याय

  • 54π cm2/min

  • 7π cm2/min

  • 27 cm2/min

  • none of these

MCQ

उत्तर

\[\text { Let r be the radius, h be the height and S be the lateral surface area of the cone at any time t } .\]

\[\text { Given }: \frac{dr}{dt} = 3 cm/\min\text {  and } \frac{dh}{dt} = - 4 cm/\min\]

\[\text { Here }, \]

\[ l^2 = h^2 + r^2 \]

\[ \Rightarrow l = \sqrt{\left( 24 \right)^2 + \left( 7 \right)^2}\]

\[ \Rightarrow l = \sqrt{625}\]

\[ \Rightarrow l = 25\]

\[S=\pi rl\]

\[ \Rightarrow S^2 = \left( \pi rl \right)^2 \]

\[ \Rightarrow S^2 = \pi^2 r^2 \left( h^2 + r^2 \right)\]

\[ \Rightarrow S^2 = \pi^2 r^4 + \pi^2 h^2 r^2 \]

\[ \Rightarrow 2S\frac{dS}{dt} = 4 \pi^2 r^3 \frac{dr}{dt} + 2 \pi^2 r^2 h\frac{dh}{dt} + 2 \pi^2 h^2 r\frac{dr}{dt}\]

\[ \Rightarrow 2\pi rl\frac{dS}{dt} = 2 \pi^2 rh\left[ \frac{2 r^2}{h}\frac{dr}{dt} + r\frac{dh}{dt} + h\frac{dr}{dt} \right]\]

\[ \Rightarrow 25\frac{dS}{dt} = 24\pi\left[ \frac{2 \left( 7 \right)^2}{24} \times 3 - 7 \times 4 + 24 \times 3 \right] \left[ \text { Given }: r = 7, h = 24 \right]\]

\[ \Rightarrow 25\frac{dS}{dt} = 24\pi\left[ \frac{49}{4} - 28 + 72 \right]\]

\[ \Rightarrow 25\frac{dS}{dt} = 24\pi\left[ \frac{49 + 288 - 112}{4} \right]\]

\[ \Rightarrow \frac{dS}{dt} = 24\pi\left[ \frac{225}{100} \right]\]

\[ \Rightarrow \frac{dS}{dt} = 24\pi\left( 2 . 25 \right)\]

\[ \Rightarrow \frac{dS}{dt} = 54\pi \text{cm}^2 /\sec\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Derivative as a Rate Measurer - Exercise 13.4 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 13 Derivative as a Rate Measurer
Exercise 13.4 | Q 10 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?


The total cost C(x) associated with the production of x units of an item is given by C(x) = 0.005x3 – 0.02x2 + 30x + 5000. Find the marginal cost when 3 units are produced, whereby marginal cost we mean the instantaneous rate of change of total cost at any level of output.


Find the rate of change of the volume of a sphere with respect to its diameter ?


The radius of a spherical soap bubble is increasing at the rate of 0.2 cm/sec. Find the rate of increase of its surface area, when the radius is 7 cm.


If y = 7x − x3 and x increases at the rate of 4 units per second, how fast is the slope of the curve changing when x = 2?


Find an angle θ which increases twice as fast as its cosine ?


The top of a ladder 6 metres long is resting against a vertical wall on a level pavement, when the ladder begins to slide outwards. At the moment when the foot of the ladder is 4 metres from the wall, it is sliding away from the wall at the rate of 0.5 m/sec. How fast is the top-sliding downwards at this instance?
How far is the foot from the wall when it and the top are moving at the same rate?


A balloon in the form of a right circular cone surmounted by a hemisphere, having a diameter equal to the height of the cone, is being inflated. How fast is its volume changing with respect to its total height h, when h = 9 cm.


Water is running into an inverted cone at the rate of π cubic metres per minute. The height of the cone is 10 metres, and the radius of its base is 5 m. How fast the water level is rising when the water stands 7.5 m below the base.


The surface area of a spherical bubble is increasing at the rate of 2 cm2/s. When the radius of the bubble is 6 cm, at what rate is the volume of the bubble increasing?


The volume of metal in a hollow sphere is constant. If the inner radius is increasing at the rate of 1 cm/sec, find the rate of increase of the outer radius when the radii are 4 cm and 8 cm respectively.


Sand is being poured onto a conical pile at the constant rate of 50 cm3/ minute such that the height of the cone is always one half of the radius of its base. How fast is the height of the pile increasing when the sand is 5 cm deep ?


A particle moves along the curve y = (2/3)x3 + 1. Find the points on the curve at which the y-coordinate is changing twice as fast as the x-coordinate ?


The volume of a spherical balloon is increasing at the rate of 25 cm3/sec. Find the rate of change of its surface area at the instant when radius is 5 cm ?


A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.


The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. How far is the area increasing when the side is 10 cms?


The side of an equilateral triangle is increasing at the rate of \[\frac{1}{3}\] cm/sec. Find the rate of increase of its perimeter ?


Find the surface area of a sphere when its volume is changing at the same rate as its radius ?


Side of an equilateral triangle expands at the rate of 2 cm/sec. The rate of increase of its area when each side is 10 cm is


The distance moved by the particle in time t is given by x = t3 − 12t2 + 6t + 8. At the instant when its acceleration is zero, the velocity is


For what values of x is the rate of increase of x3 − 5x2 + 5x + 8 is twice the rate of increase of x ?


The coordinates of the point on the ellipse 16x2 + 9y2 = 400 where the ordinate decreases at the same rate at which the abscissa increases, are


The volume of a sphere is increasing at the rate of 4π cm3/sec. The rate of increase of the radius when the volume is 288 π cm3, is


If the rate of change of volume of a sphere is equal to the rate of change of its radius, then its radius is equal to


If the rate of change of area of a circle is equal to the rate of change of its diameter, then its radius is equal to


Each side of an equilateral triangle is increasing at the rate of 8 cm/hr. The rate of increase of its area when side is 2 cm, is


In a sphere the rate of change of volume is


Water is dripping out at a steady rate of 1 cu cm/sec through a tiny hole at the vertex of the conical vessel, whose axis is vertical. When the slant height of water in the vessel is 4 cm, find the rate of decrease of slant height, where the vertical angle of the conical vessel is `pi/6`


The rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm, is ______.


A spherical ball of salt is dissolving in water in such a manner that the rate of decrease of the volume at any instant is proportional to the surface. Prove that the radius is decreasing at a constant rate


If the area of a circle increases at a uniform rate, then prove that perimeter varies inversely as the radius


Two men A and B start with velocities v at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being seperated.


The instantaneous rate of change at t = 1 for the function f (t) = te-t + 9 is ____________.


A particle is moving along the curve x = at2 + bt + c. If ac = b2, then particle would be moving with uniform ____________.


The rate of change of area of a circle with respect to its radius r at r = 6 cm is ____________.


The median of an equilateral triangle is increasing at the ratio of `2sqrt(3)` cm/s. Find the rate at which its side is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×