मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Speed of Sound in Hydrogen at 0°C is 1280 M S−1. the Density of Hydrogen at Stp is 0.089 Kg M−3. - Physics

Advertisements
Advertisements

प्रश्न

The speed of sound in hydrogen at 0°C is 1280 m s−1. The density of hydrogen at STP is 0.089 kg m−3. Calculate the molar heat capacities Cp and Cv of hydrogen.

थोडक्यात उत्तर

उत्तर

Given:
Velocity of sound in hydrogen, V = 1280 m/s
Temperature, T = 0°C = 273 K
Density of H2 = 0.089 kg/m3
R = 8.3 J/mol-K
At STP,
  P = 105 Pa
We know:

`"V"_"sound" = (sqrt (gamma"p")/ρ )`

1280 = `sqrt ((gamma xx10 ^5)/0.089)`

Or `gamma = (1280 xx 1280 xx 0.089)/10^5`

= 1.46

`"C"_"p"/ "C"_"v" = gamma or "C"_"p" -"C"_"v" = "R" `

`"C"_"v" = "R"/(gamma-1) = 8.3 /(1.46-1)`

= 18.0J /mol -K

Cp = γ Cv =1.46 × 18.0

= 26.28 ≈ 26.3 / mol -K

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Specific Heat Capacities of Gases - Exercises [पृष्ठ ८०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 5 Specific Heat Capacities of Gases
Exercises | Q 32 | पृष्ठ ८०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Given below are densities of some solids and liquids. Give rough estimates of the size of their atoms:

Substance Atomic Mass (u) Density (10Kg m-3)
Carbon (diamond) 12.01 2.22
Gold 197.00 19.32
Nitrogen (liquid) 14.01 1.00
Lithium 6.94 0.53
Fluorine (liquid) 19.00 1.14

[Hint: Assume the atoms to be ‘tightly packed’ in a solid or liquid phase, and use the known value of Avogadro’s number. You should, however, not take the actual numbers you obtain for various atomic sizes too literally. Because of the crudeness of the tight packing approximation, the results only indicate that atomic sizes are in the range of a few Å].


The specific heat capacity of water is 


Does a gas have just two specific heat capacities or more than two? Is the number of specific heat capacities of a gas countable?


Can we define specific heat capacity at constant temperature?


Can we define specific heat capacity for an adiabatic process?


In a real gas, the internal energy depends on temperature and also on volume. The energy increases when the gas expands isothermally. Examining the derivation of Cp − Cv = R, find whether Cp − Cv will be more than R, less than R or equal to R for a real gas.


Two samples A and B are initially kept in the same state. Sample A is expanded through an adiabatic process and the sample B through an isothermal process. The final volumes of the samples are the same. The final pressures in A and B are pA and pBrespectively.


Let ∆Wa and ∆Wb be the work done by the systems A and B, respectively, in the previous question.


Consider the processes A and B shown in the figure. It is possible that


Three identical adiabatic containers A, B and C contain helium, neon and oxygen, respectively, at equal pressure. The gases are pushed to half their original volumes.
(a) The final temperatures in the three containers will be the same.
(b) The final pressures in the three containers will be the same.
(c) The pressures of helium and neon will be the same but that of oxygen will be different.
(d) The temperatures of helium and neon will be the same but that of oxygen will be different.


5 g of a gas is contained in a rigid container and is heated from 15°C to 25°C. Specific heat capacity of the gas at constant volume is 0.172 cal g−1 °C−1 and the mechanical equivalent of heat is 4.2 J cal−1. Calculate the change in the internal energy of the gas


A sample of air weighing 1.18 g occupies 1.0 × 103 cm3 when kept at 300 K and 1.0 × 105 Pa. When 2.0 cal of heat is added to it at constant volume, its temperature increases by 1°C. Calculate the amount of heat needed to increase the temperature of air by 1°C at constant pressure if the mechanical equivalent of heat is  4.2 × 107 erg cal−1. Assume that air behaves as an ideal gas.


An ideal gas expands from 100 cm3 to 200 cm3 at a constant pressure of 2.0 × 105 Pa when 50 J of heat is supplied to it. Calculate (a) the change in internal energy of the gas (b) the number of moles in the gas if the initial temperature is 300 K (c) the molar heat capacity Cp at constant pressure and (d) the molar heat capacity Cv at constant volume.


Standing waves of frequency 5.0 kHz are produced in a tube filled with oxygen at 300 K. The separation between the consecutive nodes is 3.3 cm. Calculate the specific heat capacities Cp and Cv of the gas.


Molar specific heat of water is C = 74.7 J/mol K, its value in cal/g K is ______. 


A diatomic molecule can be modelled as two rigid balls connected with spring such that the balls can vibrate with respect to centre of mass of the system (spring + balls). Consider a diatomic gas made of such diatomic molecule. If the gas performs 20 Joule of work under isobaric condition, then heat given to the gas is ______ J.


If at same temperature and pressure, the densities for two diatomic gases are respectively d1 and d2 then the ratio of velocities of sound in these gases will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×