मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Two Blocks of Masses 400 G and 200 G Are Connected Through a Light String Going Over a Pulley Which is Free to Rotate About Its Axis. - Physics

Advertisements
Advertisements

प्रश्न

Two blocks of masses 400 g and 200 g are connected through a light string going over a pulley which is free to rotate about its axis. The pulley has a moment of inertia \[1 \cdot 6 \times  {10}^{- 4}   kg -  m^2\] and a radius 2⋅0 cm, Find (a) the kinetic energy of the system as the 400 g block falls through 50 cm, (b) the speed of the blocks at this instant.

बेरीज

उत्तर

From the free body diagram, we have

\[0 . 4g -  T_1  = 0 . 4a  ..........(1)\]

\[ T_2  - 0 . 2g = 0 . 2a  ..........(2)\]

\[\left( T_1 - T_2 \right)  r = \frac{la}{r}  ...........(3)\]

On solving the above equations, we get

\[a = \frac{\left( 0 . 4 - 0 . 2 \right)  g}{\left( 0 . 4 + 0 . 2 + \frac{1 . 6}{0 . 4} \right)} = \frac{g}{5}\]

On solving the (b) part of the question first, we have

Speed of the blocks = \[v = \sqrt{\left( 2ah \right)} = \sqrt{2 \times \frac{g}{5} \times 0 . 5} = \sqrt{\left( \frac{9 . 8}{5} \right)} = 1 . 4  m/s\]

(a) Total kinetic energy of the system

\[= \frac{1}{2} m_1  v^2  + \frac{1}{2} m_2  v^2  + \frac{1}{2}I \omega^2 \]

\[ = \frac{1}{2} m_1  v^2  + \frac{1}{2} m_2  v^2  + \frac{1}{2}I \left( \frac{v}{r} \right)^2 \]

\[ = \left( \frac{1}{2} \times 0 . 4 \times \left( 1 . 4 \right)^2 \right) + \left( \frac{1}{2} \times 0 . 2 \times \left( 1 . 4 \right)^2 \right) + \left( \frac{1}{2} \times 1 . 6 \times {10}^{- 4} \times \left( \frac{1 . 4}{2 \times {10}^{- 2}} \right)^2 \right)\]

\[ = \left( 0 . 2 + 0 . 1 + 0 . 2 \right) \left( 1 . 4 \right)^2 \]

\[ = 0 . 5 \times 1 . 96 = 0 . 98 \text{ joule}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Rotational Mechanics - Exercise [पृष्ठ १९९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 10 Rotational Mechanics
Exercise | Q 65 | पृष्ठ १९९

संबंधित प्रश्‍न

Show that the child’s new kinetic energy of rotation is more than the initial kinetic energy of rotation. How do you account for this increase in kinetic energy?


A solid cylinder rolls up an inclined plane of angle of inclination 30°. At the bottom of the inclined plane, the centre of mass of the cylinder has a speed of 5 m/s.

(a) How far will the cylinder go up the plane?

(b) How long will it take to return to the bottom?


Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speeds ω1 and ω2 are brought into contact face to face with their axes of rotation coincident. (a) What is the angular speed of the two-disc system? (b) Show that the kinetic energy of the combined system is less than the sum of the initial kinetic energies of the two discs. How do you account for this loss in energy? Take ω1 ≠ ω2.


A cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination 30°. The coefficient of static friction µs = 0.25.

(a) How much is the force of friction acting on the cylinder?

(b) What is the work done against friction during rolling?

(c) If the inclination θ of the plane is increased, at what value of θ does the cylinder begin to skid, and not roll perfectly?


Let I1 an I2 be the moments of inertia of two bodies of identical geometrical shape, the first made of aluminium and the second of iron.


A string is wrapped on a wheel of moment of inertia 0⋅20 kg-m2 and radius 10 cm and goes through a light pulley to support a block of mass 2⋅0 kg as shown in the following figure. Find the acceleration of the block.


Suppose the smaller pulley of the previous problem has its radius 5⋅0 cm and moment of inertia 0⋅10 kg-m2. Find the tension in the part of the string joining the pulleys.


The pulleys shown in the following figure are identical, each having a radius R and moment of inertia I. Find the acceleration of the block M.


The descending pulley shown in the following figure has a radius 20 cm and moment of inertia 0⋅20 kg-m2. The fixed pulley is light and the horizontal plane frictionless. Find the acceleration of the block if its mass is 1⋅0 kg.


A uniform metre stick of mass 200 g is suspended from the ceiling thorough two vertical strings of equal lengths fixed at the ends. A small object of mass 20 g is placed on the stick at a distance of 70 cm from the left end. Find the tensions in the two strings.


A kid of mass M stands at the edge of a platform of radius R which can be freely rotated about its axis. The moment of inertia of the platform is I. The system is at rest when a friend throws a ball of mass m and the kid catches it. If the velocity of the ball is \[\nu\] horizontally along the tangent to the edge of the platform when it was caught by the kid, find the angular speed of the platform after the event.


A wheel of mass 15 kg has a moment of inertia of 200 kg-m2 about its own axis, the radius of gyration will be:


From a circular ring of mass, ‘M’ and radius ‘R’ an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is ‘K’ times ‘MR2’. Then the value of ‘K’ is ______.


From a circular ring of mass ‘M’ and radius ‘R’ an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is ‘K’ times ‘MR2’. Then the value of ‘K’ is ______.


With reference to figure of a cube of edge a and mass m, state whether the following are true or false. (O is the centre of the cube.)

  1. The moment of inertia of cube about z-axis is Iz = Ix + Iy
  2. The moment of inertia of cube about z ′ is I'z = `I_z + (ma^2)/2`
  3. The moment of inertia of cube about z″ is = `I_z + (ma^2)/2`
  4. Ix = Iy

Why does a solid sphere have smaller moment of inertia than a hollow cylinder of same mass and radius, about an axis passing through their axes of symmetry?


The figure shows a small wheel fixed coaxially on a bigger one of double the radius. The system rotates about the common axis. The strings supporting A and B do not slip on the wheels. If x and y be the distances travelled by A and B in the same time interval, then ______.


A thin circular plate of mass M and radius R has its density varying as ρ(r) = ρ0r with ρ0 as constant and r is the distance from its center. The moment of Inertia of the circular plate about an axis perpendicular to the plate and passing through its edge is I = a MR2. The value of the coefficient a is ______.


A cubical block of mass 6 kg and side 16.1 cm is placed on a frictionless horizontal surface. It is hit by a cue at the top to impart impulse in the horizontal direction. The minimum impulse imparted to topple the block must be greater than ______ kg m/s.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×