मराठी

Two Chords Ab, Cd of Lengths 16 Cm and 30 Cm, Are Parallel. If the Distance Between Ab and Cd is 23 Cm. Find the Radius of the Circle. - Mathematics

Advertisements
Advertisements

प्रश्न

Two chords AB, CD of lengths 16 cm and 30 cm, are parallel. If the distance between AB and CD is 23 cm. Find the radius of the circle.

बेरीज

उत्तर

Let AB and CD be the two parallel chords of a circle with centre O and radius r cm.
OM ⊥ AB and ON ⊥ CD
AM = `1/2"AB" = 1/2 xx 16` = 8 cm

CN = `1/2"CD" = 1/2 xx 30` = 15 cm

Let OM = x cm, MN = 23 cm
so ON = (23 - x) cm
OA = OC = r cm

In Δ OAM,
OA2 = AM2 + OM2
⇒ r2 = (8)2 + (x)           ....(i)

In Δ OCN,
OC2 = CN2 + ON2
⇒ r2 = (15)2 + (23 - x )2      ....(ii)
From (i) and (ii),
x2 + 64 = 225 + (23 - x)2
⇒ x2 + 64 = 225 + 529 - 46x + x2
⇒ 46x = 225 + 529 - 64
⇒ 46x = 690
⇒  x = 15 cm
From (i),
r2 = (8)2 + (15)2
r2 = 64 + 225
r2 = 289
⇒ r = 17 cm
Hence, the radius of a circle is 17 cm.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 15 Circles
Exercise 2 | Q 20

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×