मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Two Vectors Have Magnitudes 2 M and 3m. the Angle Between Them is 60°. Find (A) the Scalar Product of the Two Vectors, (B) the Magnitude of Their Vector Product. - Physics

Advertisements
Advertisements

प्रश्न

Two vectors have magnitudes 2 m and 3m. The angle between them is 60°. Find (a) the scalar product of the two vectors, (b) the magnitude of their vector product.

थोडक्यात उत्तर

उत्तर

Let the two vectors be \[\left| \vec{a} \right| = 2 m\text { and } \left| \vec{b} \right| = 3 m\].

Angle between the vectors, θ = 60°
(a) The scalar product of two vectors is given by \[\vec{a} . \vec{b} = \left| \vec{a} \right| . \left| \vec{b} \right| \cos\theta^\circ\]

∴ \[\vec{a} . \vec{b} = \left| \vec{a} \right| . \left| \vec{b} \right| \cos 60^\circ\]

\[= 2 \times 3 \times \frac{1}{2} = 3 m^2\]

(b) The vector product of two vectors is given by \[\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{a} \right| \sin\theta^\circ\].

∴ \[\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{a} \right| \sin 60^\circ\]

\[= 2 \times 3 \times \frac{\sqrt{3}}{2}\]

\[ = 3\sqrt{3} m^2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Physics and Mathematics - Exercise [पृष्ठ २९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 2 Physics and Mathematics
Exercise | Q 11 | पृष्ठ २९

संबंधित प्रश्‍न

Some of the most profound statements on the nature of science have come from Albert Einstein, one of the greatest scientists of all time. What do you think did Einstein mean when he said : “The most incomprehensible thing about the world is that it is comprehensible”?


It is desirable that the standards of units be easily available, invariable, indestructible and easily reproducible. If we use foot of a person as a standard unit of length, which of the above features are present and which are not?


Choose the correct statements(s):
(a) All quantities may be represented dimensionally in terms of the base quantities.
(b) A base quantity cannot be represented dimensionally in terms of the rest of the base quantities.
(c) The dimensions of a base quantity in other base quantities is always zero.
(d) The dimension of a derived quantity is never zero in any base quantity.


Find the dimensions of frequency .


The height of mercury column in a barometer in a Calcutta laboratory was recorded to be 75 cm. Calculate this pressure in SI and CGS units using the following data : Specific gravity of mercury = \[13 \cdot 6\] , Density of \[\text{ water} = {10}^3 kg/ m^3 , g = 9 \cdot 8 m/ s^2\] at Calcutta. Pressure
= hpg in usual symbols.


Test if the following equation is dimensionally correct:
\[V = \frac{\pi P r^4 t}{8 \eta l}\]

where v = frequency, P = pressure, η = coefficient of viscosity.


Test if the following equation is dimensionally correct:
\[v = \frac{1}{2 \pi}\sqrt{\frac{mgl}{I}};\] 
where h = height, S = surface tension, \[\rho\] = density, P = pressure, V = volume, \[\eta =\] coefficient of viscosity, v = frequency and I = moment of interia.


Is it possible to add two vectors of unequal magnitudes and get zero? Is it possible to add three vectors of equal magnitudes and get zero?


Let ε1 and ε2 be the angles made by  \[\vec{A}\] and -\[\vec{A}\] with the positive X-axis. Show that tan ε1 = tan ε2. Thus, giving tan ε does not uniquely determine the direction of \[\vec{A}\].

  

Is the vector sum of the unit vectors  \[\vec{i}\] and \[\vec{i}\] a unit vector? If no, can you multiply this sum by a scalar number to get a unit vector?

 


The radius of a circle is stated as 2.12 cm. Its area should be written as


A situation may be described by using different sets coordinate axes having different orientation. Which the following do not depended on the orientation of the axis?
(a) the value of a scalar
(b) component of a vector
(c) a vector
(d) the magnitude of a vector.


The x-component of the resultant of several vectors
(a) is equal to the sum of the x-components of the vectors of the vectors
(b) may be smaller than the sum of the magnitudes of the vectors
(c) may be greater than the sum of the magnitudes of the vectors
(d) may be equal to the sum of the magnitudes of the vectors.


A vector \[\vec{A}\] makes an angle of 20° and \[\vec{B}\] makes an angle of 110° with the X-axis. The magnitudes of these vectors are 3 m and 4 m respectively. Find the resultant.


Two vectors have magnitudes 2 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.


If \[\vec{A} , \vec{B} , \vec{C}\] are mutually perpendicular, show that  \[\vec{C} \times \left( \vec{A} \times \vec{B} \right) = 0\] Is the converse true?


Give an example for which \[\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{B} \text{ but } \vec{A} \neq \vec{C}\].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×