मराठी

Use Ruler and Compasses Only for the Following Questions: Construct Triangle Bcp, When Cb = 5 Cm, Bp = 4 Cm, ∠Pbc = 45°. Complete the Rectangle Abcd Such that : (I) P is Equidistant from Ab and Bc - Mathematics

Advertisements
Advertisements

प्रश्न

Use ruler and compasses only for the following questions:
Construct triangle BCP, when CB = 5 cm, BP = 4 cm, ∠PBC = 45°.
Complete the rectangle ABCD such that :
(i) P is equidistant from AB and BC and
(ii) P is equidistant from C and D. Measure and write down the length of AB.

आकृती
बेरीज

उत्तर

Given: BC = 5 cm, BP = 4 cm and ∠PBC = 45°
Steps of construction :
1. Constant ΔBCP with BC = 5 cm, BP = 4 cm and ∠PBC = 45°.
2. Draw perpendicular BE and CF and B and C respectively.

3. Draw perpendicular from on CF meeting CF in K.
4. Cut CD from CF, such that CK = KD.
5. Cut BA from BE, such that BA = CD.
6. Join AD.
Hence, ABCD is the required rectangle and AB = 5·7 cm.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Loci (Locus and its Constructions) - Figure Based Questions

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 14 Loci (Locus and its Constructions)
Figure Based Questions | Q 29

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Construct a triangle ABC with AB = 5.5 cm, AC = 6 cm and ∠BAC = 105°

Hence:

1) Construct the locus of points equidistant from BA and BC

2) Construct the locus of points equidistant from B and C.

3) Mark the point which satisfies the above two loci as P. Measure and write the length of PC.


O is a fixed point. Point P moves along a fixed line AB. Q is a point on OP produced such that OP = PQ. Prove that the locus of point Q is a line parallel to AB.


Construct a ti.PQR, in which PQ=S. 5 cm, QR=3. 2 cm and PR=4.8 cm. Draw the locus of a point which moves so that it is always 2.5 cm from Q. 


In the given figure ABC is a triangle. CP bisects angle ACB and MN is perpendicular bisector of BC. MN cuts CP at Q. Prove Q is equidistant from B and C, and also that Q is equidistant from BC and AC. 


Draw and describe the lorus in the following cases: 

The lorus of points inside a circle and equidistant from two fixed points on the circle .


Draw and describe the lorus in the following cases: 

The lorus of a point in rhombus ABCD which is equidistant from AB and AD .


Describe completely the locus of point in  the following cases: 

Midpoint of radii of a circle. 


Describe completely the locus of points in the following cases: 

Point in a plane equidistant from a given line. 


State and draw the locus of a swimmer maintaining the same distance from a lighthouse.


Construct a Δ ABC, with AB = 6 cm, AC = BC = 9 cm; find a point 4 cm from A and equidistant from B and C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×