Advertisements
Advertisements
प्रश्न
वृत्त की उस जीवा द्वारा निर्मित दोनों वृत्तखंडों के क्षेत्रफलों का अंतर ज्ञात कीजिए, जिसकी लंबाई 5 cm है और जो केंद्र पर 90∘ का कोण अंतरित करती है।
उत्तर
मान लीजिए कि वृत्त की त्रिज्या r है।
दिया गया है कि, एक वृत्त की जीवा की लंबाई, AB = 5 cm है।
और त्रिज्यखंड AOBA का केंद्रीय कोण (θ) = 90° है।
अब, ΔAOB में,
(AB)2 = (OA)2 + (OB)2 ...[पाइथागोरस प्रमेय द्वारा]
(5)2 = r2 + r2
⇒ 2r2 = 25
∴ r = `5/sqrt(2) "cm"`
अब, ΔAOB में हम एक लंब रेखा OD खींचते हैं, जो AB पर D पर मिलती है और जीवा AB को दो बराबर भागों में विभाजित करती है।
So, AD = DB
= `"AB"/2`
= `5/2 "cm"` ...[∵ वृत्त की जीवा पर केंद्र से खींचा गया लंब जीवा को दो बराबर भागों में विभाजित करता है।]
पाइथागोरस प्रमेय द्वारा, ΔADO में,
OA2 = OD2 + AD2
⇒ OD2 = OA2 – AD2
= `(5/sqrt(2))^2 - (5/2)^2`
= `25/2 - 25/4`
= `(50 - 25)/4`
= `25/4`
⇒ OD = `5/2 "cm"`
∴ एक समद्विबाहु ΔAOB का क्षेत्रफल
= `1/2 xx "AB" xx "OD"`
= `1/2 xx 5 xx 5/2`
= `25/4 "cm"^2`
अब, सेक्टर AOBA का क्षेत्रफल
= `(pi"r"^2)/360^circ xx θ`
= `(pi xx (5/sqrt(2))^2)/360^circ xx 90^circ`
= `(pi xx 25)/(2 xx 4)`
= `(25pi)/8 "cm"^2`
∴ लघु खण्ड का क्षेत्रफल
= त्रिज्यखंड AOBA का क्षेत्रफल – एक समद्विबाहु ΔAOB का क्षेत्रफल
= `((25pi)/8 - 25/4) "cm"^2`
अब, वृत्त का क्षेत्रफल
= πr2
= `pi(5/sqrt(2))^2`
= `(25pi)/2 "cm"^2`
∴ प्रमुख खण्ड का क्षेत्रफल
= वृत्त का क्षेत्रफल – लघु खण्ड का क्षेत्रफल
= `(25pi)/2 - ((25pi)/8 - 25/4)`
= `(25pi)/8 (4 - 1) + 25/4`
= `((75pi)/8 + 25/4) "cm"^2`
∴ एक वृत्त के दो खंडों के क्षेत्रफलों का अंतर
= प्रमुख खंड का क्षेत्रफल – लघु खंड का क्षेत्रफल
= `((75pi)/8 + 25/4) - ((25pi)/8 - 25/4)`
= `((75pi)/8 - (25pi)/8) + (25/4 + 25/4)`
= `(75pi - 25pi)/8 + 50/4`
= `(50pi)/8 + 50/4`
= `((25pi)/4 + 25/2) "cm"^2`
अतः, दो खंडों के क्षेत्रफलों का आवश्यक अंतर `((25pi)/4 + 25/2) "cm"^2` है।
APPEARS IN
संबंधित प्रश्न
12 सेमी त्रिज्या वाले वृत्त की एक जीवा केंद्र पर 120° का कोण अंतरित करती है। वृत्त के संगत वृत्त खण्ड का क्षेत्रफल ज्ञात कीजिए। [π = 3.14 और `sqrt3 = 1.73 ` का प्रयोग कीजिए।]
एक वृत्ताकार मेजपोश, जिसकी त्रिज्या 32 सेमी है, में बीच में एक समबाहु ABC त्रिभुज छोड़ते हुए एक डिजाइनर बना हुआ है, जैसा कि आकृति में दिखाया गया है। इस छायांकित डिजाइन का क्षेत्रफल ज्ञात कीजिए। [उपयोग Π = 22/7]
यदि R1 और R2 त्रिज्याओं वाले दो वृत्तों की परिधियों का योग त्रिज्या R वाले एक वृत्त की परिधि के बराबर हो, तो ______।
क्या यह कहना सत्य है कि व्यास d cm वाले एक वृत्ताकार पहिए द्वारा एक परिभ्रमण में चली गयी दूरी 2 π d cm होती है? क्यों?
यदि त्रिज्या r वाले एक वृत्त के एक चाप की लंबाई त्रिज्या 2r वाले एक वृत्त के चाप की लंबाई के बराबर हो, तो पहले वृत्त के संगत त्रिज्यखंड का कोण दूसरे वृत्त के संगत त्रिज्यखंड के कोण का दोग़ना होता है? क्या यह कथन असत्य है? क्यों?
दो वृत्तों की परिधियाँ बराबर हैं। क्या यह आवश्यक है कि इन वृतों के क्षेत्रफल भी बराबर हों? क्यों?
उस वृत्त की त्रिज्या ज्ञात कीजिए, जिसकी परिधि त्रिज्याओं 15 cm और 18 cm वाले दो वृत्तों की परिधियों के योग के बराबर है।
आकृति में, AB वृत का व्यास है, AC = 6 cm और BC = 8 cm है। छायांकित भाग का क्षेत्रफल ज्ञात कीजिए (π = 3.14 का प्रयोग कीजिए)।
एक त्रिभुजाकार खेत की भुजाएँ 15 m, 16 m और 17 m हैं। इस खेत में चरने के लिए, इसके तीनों कोनों से एक गाय, एक भैंस और एक घोड़े को अलग-अलग 7 m लंबी रस्सियों से बाँध दिया गया है। खेत के उस भाग का क्षेत्रफल ज्ञात कीजिए जिसमें ये तीनों पशु चर नहीं पाएँगे।
त्रिज्या 21 cm वाले वृत्त का एक चाप केंद्र पर 60° का कोण अंतरित करता है। ज्ञात कीजिए।
संगत जीवा द्वारा बनाए गए वृत्तखंड का क्षेत्रफल [ प्रयोग कीजिए =`22/7`]