मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

What are the disadvantages of a potentiometer? - Physics

Advertisements
Advertisements

प्रश्न

What are the disadvantages of a potentiometer?

टीपा लिहा

उत्तर

Disadvantages of a potentiometer over a voltmeter:

  1. A potentiometer is an indirect measurement instrument, whereas a voltmeter is a direct reading instrument.
  2. A potentiometer is unwieldy while a voltmeter is portable.
  3. Unlike a voltmeter, a potentiometer requires a standard source of emf and calibration to measure an unknown emf.
shaalaa.com
Potentiometer
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Current Electricity - Exercises [पृष्ठ २२८]

APPEARS IN

बालभारती Physics [English] 12 Standard HSC Maharashtra State Board
पाठ 9 Current Electricity
Exercises | Q 2.11 | पृष्ठ २२८

संबंधित प्रश्‍न

Write two factors by which current sensitivity of a potentiometer can be increased.


Figure shows a potentiometer with a cell of 2.0 V and internal resistance 0.40 Ω maintaining a potential drop across the resistor wire AB. A standard cell which maintains a constant emf of 1.02 V (for very moderate currents up to a few mA) gives a balance point at 67.3 cm length of the wire. To ensure very low currents drawn from the standard cell, very high resistance of 600 kΩ is put in series with it, which is shorted close to the balance point. The standard cell is then replaced by a cell of unknown emf ε and the balance point found similarly, turns out to be at 82.3 cm length of the wire.

(a) What is the value ε?

(b) What purpose does the high resistance of 600 kΩ have?

(c) Is the balance point affected by this high resistance?

(d) Is the balance point affected by the internal resistance of the driver cell?

(e) Would the method work in the above situation if the driver cell of the potentiometer had an emf of 1.0 V instead of 2.0 V?

(f) Would the circuit work well for determining an extremely small emf, say of the order of a few mV (such as the typical emf of a thermo-couple)? If not, how will you modify the circuit?


Figure shows a 2.0 V potentiometer used for the determination of internal resistance of a 1.5 V cell. The balance point of the cell in open circuit is 76.3 cm. When a resistor of 9.5 Ω is used in the external circuit of the cell, the balance point shifts to 64.8 cm length of the potentiometer wire. Determine the internal resistance of the cell.


State the advantages of potentiometer over voltmeter.


SI unit of potential gradient is _______.

(a) V cm

(b) `V/"cm"`

(c) Vm

(d) `V/m`

 


State the underlying principle of a potentiometer ?


Figure shows a long potentiometer wire AB having a constant potential gradient. The null points for the two primary cells of emfs ε1 and ε2 connected in the manner shown are obtained at a distance of l1 = 120 cm and l2 = 300 cm from the end A. Determine (i) ε12 and (ii) position of null point for the cell ε1 only.


State the working principle of a potentiometer. With the help of the circuit diagram, explain how a potentiometer is used to compare the emf's of two primary cells. Obtain the required expression used for comparing the emfs.


Write two possible causes for one sided deflection in a potentiometer experiment.


Two students ‘X’ and ‘Y’ perform an experiment on potentiometer separately using the circuit given below:

Keeping other parameters unchanged, how will the position of the null point be affected if

(i) ‘X’ increases the value of resistance R in the set-up by keeping the key K1 closed and the Key K2 opens?

(ii) ‘Y’ decreases the value of resistance S in the set-up, while the key K2 remains open and they K1 closed?

Justify.


When a resistor of 5Ω is connected across the cell, its terminal potential difference is balanced by 150 cm of potentiometer wire and when a resistance of 10 Ω is connected across the cell, the terminal potential difference is balanced by 175 cm same potentiometer wire. Find the balancing length when the cell is in open circuit and the internal resistance of the cell.


The potentiometer wire AB shown in the figure is 50 cm long. When AD = 30 cm, no deflection occurs in the galvanometer. Find R.


Define potential gradient of the potentiometer wire.


Why should not the jockey be slided along the potentiometer wire?


State the uses of a potentiometer.


Describe how a potentiometer is used to compare the EMFs of two cells by connecting the cells individually.


Describe how a potentiometer is used to compare the emf's of two cells by the combination method.


The resistance of a potentiometer wire is 8 Ω and its length is 8 m. A resistance box and a 2 V battery are connected in series with iL What should be the resistance in the box if it is desired to have a potential drop of 1 µV/mm?


When two cells of emf's E1 and E2 are connected in series so as to assist each other, their balancing length on a potentiometer wire is found to be 2.7 m. When the cells are connected in series so as to oppose each other, the balancing length is found to be 0.3 m. Compare the emf's of the two cells.


If the potential gradient of a wire decreases, then its length ______  


The instrument which can measure terminal potential difference as well as electromotive force (emf) is ______ 


A voltmeter has a resistance of 100 Ω. What will be its reading when it is connected across a cell of emf 6 V and internal resistance 20 Ω? 


A cell of e.m.f 1.5V and negligible internal resistance is connected in series with a potential meter of length 10 m and the total resistance of 20 Ω. What resistance should be introduced in the resistance box such that the potential drop across the potentiometer is one microvolt per cm of the wire?  


A potentiometer wire is 4m long and potential difference of 3V is maintained between the ends. The emf of the cell, which balances against a length of 100 cm of the potentiometer wire is ____________.


Two cells having unknown emfs E1 and E2 (E1 > E2) are connected in potentiometer circuit, so as to assist each other. The null point obtained is at 490 cm from the higher potential end. When cell E2 is connected, so as to oppose cell E1, the null point is obtained at 90 cm from the same end. The ratio of the emfs of two cells `("E"_1/"E"_2)` is ______.


The resistance of the potentiometer wire should ideally be ____________.


In a potentiometer experiment, when the galvanometer shows no deflection, then no current flows through ____________.


Select the WRONG statement:


Which of the following is true for a potentiometer?


To determine the internal resistance of a cell by using potentiometer, the null point is at 1 m when cell is shunted by 3 Ω resistance and at a length 1.5 m when cell is shunted by 6 Ω resistance. The internal resistance of the cell is ______.


A cell of e.m.f. 'E' is connected across a resistance 'R'. The potential difference across the terminals of the cell is 90% ofE. The internal resistance of the cell is ______.


A potentiometer wire of length 100 cm has a resistance of 10 `Omega.` It is connected in series with a resistance and an accumulator of e.m.f 2 V and of negligible internal resistance. A source of e.m.f 10 mV is balanced against a 40 cm length of the potentiometer wire. The value of the external resistance is ____________.


When two cells of e.m.f 1.5 V and 1.1 V connected in series are balanced on a potentiometer, the balancing length is 260 cm. The balancing length, when they are connected in opposition is (in cm) ____________.


In the potentiometer experiment, the balancing length with cell E1 of unknown e.m.f. is ℓ1 cm. By shunting the cell E1 with resistance 'R' which is equal to internal resistance (r) of the cell E1, the balancing length ℓ2 is ______


The current drawn from the battery in the given network is ______ 

(Internal resistance of the battery is neglected)

 


If the length of potentiometer wire is increased, then the length of the previously obtained balance point will ______.


It is observed in a potentiometer experiment that no current passes through the galvanometer when the terminals of the cell are connected across a certain length of the potentiometer wire. On shunting the cell by a 2 Ω resistance, the balancing length is reduced to half. The internal resistance of the cell is ______.


A potentiometer wire is 100 cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite direction. The balance points are obtained at 50 cm and 10 cm from the positive end of the wire in the two cases. The ratio of emf's is ______.


AB is a wire of potentiometer with the increase in the value of resistance R, the shift in the balance point J will be ______.


The conductivity of super - conductor is


The value of current I in the network shown in fig.


What is the current I in the circuit as show in fig.


In a potentiometer circuit, a cell of EMF 1.5 V gives balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell, then at what length of the wire, the balance point occurs?


Consider a simple circuit shown in figure   stands for a variable resistance R′. R′ can vary from R0 to infinity. r is internal resistance of the battery (r << R << R0).

  1. Potential drop across AB is nearly constant as R ′ is varied.
  2. Current through R′ is nearly a constant as R ′ is varied.
  3. Current I depends sensitively on R′.
  4. `I ≥ V/(r + R)` always.

In an experiment with a potentiometer, VB = 10V. R is adjusted to be 50Ω (Figure). A student wanting to measure voltage E1 of a battery (approx. 8V) finds no null point possible. He then diminishes R to 10Ω and is able to locate the null point on the last (4th) segment of the potentiometer. Find the resistance of the potentiometer wire and potential drop per unit length across the wire in the second case.


Potential difference between the points A and B in the circuit shown is 16 V, then potential difference across 2Ω resistor is ______ V. volt. (VA > VB)


If you are provided a set of resistances 2Ω, 4Ω, 6Ω and 8Ω. Connect these resistances so as to obtain an equivalent resistance of `46/3`Ω.


A cell of internal resistance r is connected across an external resistance nr. Then the ratio of the terminal voltage to the emf of the cell is ______.


What will a voltmeter of resistance 200 Ω read when connected across a cell of emf 2 V and internal resistance 2 Ω?


A particle carrying 8 electron charges starts from rest and is accelerated through a potential difference of 9000 V. Calculate the KE acquired by it in keV.


Draw neat labelled diagram of potentiometer as voltage divider.


Three identical cells each of emf 'e' are connected in parallel to form a battery. What is the emf of the battery?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×