Advertisements
Advertisements
प्रश्न
Write down the following statements in symbolic form :
(A) A triangle is equilateral if and only if it is equiangular.
(B) Price increases and demand falls
उत्तर
(a) p ≡ A triangle is equilateral & q ≡ A traingle is equiangular
∴Symbolic form p↔q
(b) Let p ≡ Price increases & q≡Demand falls
∴ Symbolic form p ∧ q
APPEARS IN
संबंधित प्रश्न
Using truth table prove that p ↔ q = (p ∧ q) ∨ (~p ∧ ~q).
Using truth table, prove the following logical equivalence:
(p ∧ q) → r ≡ p → (q → r)
Using truth table prove that ∼p ˄ q ≡ (p ˅ q) ˄ ∼p
Using truth table, prove that ~ p ∧ q ≡ (p ∨ q) ∧ ~ p
Evaluate: ∫ x . log x dx
Write converse, inverse contrapositive of the statement "If two triangles are not congruent then their areas are not equal.
Write the following compound statement symbolically.
Nagpur is in Maharashtra and Chennai is in Tamil Nadu.
Write the following compound statement symbolically.
Angle is neither acute nor obtuse.
Write the following compound statement symbolically.
If Δ ABC is right-angled at B, then m∠A + m∠C = 90°
Write the following compound statement symbolically.
Hima Das wins gold medal if and only if she runs fast.
Construct the truth table of the following statement pattern.
[(p → q) ∧ q] → p
Construct the truth table of the following statement pattern.
(p ∧ ∼q) ↔ (p → q)
Construct the truth table of the following statement pattern.
p → [∼ (q ∧ r)]
Construct the truth table of the following statement pattern.
∼ p ∧ [(p ∨ ∼ q) ∧ q]
Construct the truth table of the following statement pattern.
(q → p) ∨ (∼ p ↔ q)
Construct the truth table of the following statement pattern.
[p → (q → r)] ↔ [(p ∧ q) → r]
Construct the truth table of the following statement pattern.
(p ∨ ∼ q) → (r ∧ p)
If p ∧ q is false and p ∨ q is true, then ______ is not true.
Construct the truth table of the following:
p → (q → p)
Construct the truth table of the following:
(∼p ∨ ∼q) ↔ [∼(p ∧ q)]
Construct the truth table of the following:
[(p ∧ q) ∨ r] ∧ [∼r ∨ (p ∧ q)]
Determine the truth values of p and q in the following case:
(p ∨ q) is T and (p ∨ q) → q is F
Express the following statement in symbolic form.
e is a vowel or 2 + 3 = 5
Express the following statement in symbolic form.
I like playing but not singing.
Write the truth value of the following statement.
A quadratic equation has two distinct roots or 6 has three prime factors.
Write the negation of the following statement.
All men are animals.
Write the negation of the following statement.
It is false that Nagpur is capital of Maharashtra
Write the negation of the following statement.
2 + 3 ≠ 5
Write the truth value of the negation of the following statement.
For every x ∈ N, x + 3 < 8.
Write the following statement in symbolic form.
If triangle is equilateral then it is equiangular.
Write the following statement in symbolic form.
Stock prices are high if and only if stocks are rising.
Find the truth value of the following statement.
It is not true that 3 − 7i is a real number.
Find the truth value of the following statement.
If a joint venture is a temporary partnership, then discount on purchase is credited to the supplier.
Find the truth value of the following statement.
Neither 27 is a prime number nor divisible by 4.
Find the truth value of the following statement.
3 is a prime number and an odd number.
If p and q are true and r and s are false, find the truth value of the following compound statement.
p ∧ (q ∧ r)
If p and q are true and r and s are false, find the truth value of the following compound statement.
(p → q) ∨ (r ∧ s)
If p and q are true and r and s are false, find the truth value of the following compound statement.
~ [(~ p ∨ s) ∧ (~ q ∧ r)]
If p and q are true and r and s are false, find the truth value of the following compound statement.
(p → q) ↔ ~(p ∨ q)
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
~ (p ∨ q)
Assuming the first statement p and second as q. Write the following statement in symbolic form.
3 is prime number if 3 is perfect square number.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
Kavita is brilliant and brave.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
To be brave is necessary and sufficient condition to climb the Mount Everest.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
x3 + y3 = (x + y)3 if xy = 0.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
It is not true that Ram is tall and handsome.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
It is not true that intelligent persons are neither polite nor helpful.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If the question paper is not easy then we shall not pass.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
Proof is lengthy and it is not interesting.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
It is interesting iff the proof is lengthy.
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
(p ∧ q) ∨ r
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
p → r
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
∼ p ∨ q
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
p→(q ∨ r)
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
∼ (p ∨ q) ∧ r
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If price increases, then demand falls.
Write the negation of the following.
If ∆ABC is not equilateral, then it is not equiangular.
Write the negation of the following.
Ramesh is intelligent and he is hard working.
Assuming the following statement.
p : Stock prices are high.
q : Stocks are rising.
to be true, find the truth value of the following.
Stock prices are high or stocks are not rising iff stocks are rising.
Rewrite the following statement without using the connective ‘If ... then’.
If a quadrilateral is rhombus then it is not a square.
Consider the following statements.
- If D is dog, then D is very good.
- If D is very good, then D is dog.
- If D is not very good, then D is not a dog.
- If D is not a dog, then D is not very good.
Identify the pairs of statements having the same meaning. Justify.
Write the negation of the following statement.
10 > 5 and 3 < 8
Write the negation of the following statement.
I will have tea or coffee.
Negation of p → (p ˅ ∼ q) is ______
Write the negation of the statement “An angle is a right angle if and only if it is of measure 90°”
Write the following statements in symbolic form
Even though it is not cloudy, it is still raining
Using truth table prove that p ˅ (q ˄ r) ≡ (p ˅ q) ˄ (p ˅ r)
Without using truth table show that -
(p ˅ q) ˄ (∼p v ∼q) ≡ (p ∧ ∼q) ˄ (∼p ∧ q)
Choose the correct alternative:
Negation of p → (p ˅ ~q) is
Choose the correct alternative:
A biconditional statement is the conjunction of two ______ statements
Negation of “Some men are animal “ is ______
Write the negation of the statement “An angle is a right angle if and only if it is of measure 90°”
If p : Every natural number is a real number.
q : Every integer is a complex number. Then truth values of p → q and p ↔ q are ______ and ______ respectively.
If (p ∧ ~ r) → (~ p ∨ q) is a false statement, then respective truth values of p, q and r are ______.
Given 'p' and 'q' as true and 'r' as false, the truth values of p v (q ∧ ~r) and (p → r) ∧ q are respectively
If p, q are true statement and r is false statement, then which of the following statements is a true statement.
The symbolic form of the following circuit is (where p, q represents switches S1 and S2 closed respectively)
If q: There are clouds in the sky then p: it is raining. The symbolic form is ______
Which of the following is false?
Let p : 7 is not greater than 4 and q : Paris is in France by two statements. Then ∼(p ∨ q) is the statement ______
Which of the following is NOT true for p → q.
The Boolean expression ∼(q ⇒ ∼p) is equivalent to: ______
The negation of ∼s ∨ (∼r ∧ s) is equivalent to ______
The Boolean expression ∼(p ∨ q) ∨ (∼p ∧ q) is equivalent to ______
The negation of the statement: "Getting above 95% marks is a necessary condition for Hema to get admission in good college'' is ______
The logical statement (∼p → q) ∧ (q → p) is equivalent to: ______
Let p, q and r be any three logical statements. Which of the following is true?
Write the following statement in symbolic form.
It is not true that `sqrt(2)` is a rational number.
Write the following statement in symbolic form.
4 is an odd number if 3 is not a prime factor of 6.
Express the following compound statement symbolically:
3 + 8 ≥ 12 if and only if 5 × 4 ≤ 25
From the following set of statements, select two statements which have similar meaning.
- If a man is judge, then he is honest.
- If a man is not a judge, then he is not honest.
- If a man is honest, then he is a judge.
- If a man is not honest, then he is not a judge.
If p, q are true statements and r, s are false statements, then write the truth value of the compound statement
(p `→` ∼ r) `→` (q ∧ s)
Using the statements
p: Seema is fat,
q: Seema is happy,
Write the following statements in symbolic form;
- Seema is thin and happy.
- If Seema is fat then she is unhappy.