Advertisements
Advertisements
प्रश्न
z ज्ञात कीजिए, यदि |z| = 4 और arg(z) = `(5pi)/6`
उत्तर
पता है कि, |z| = 4 और arg(z) = `(5pi)/6`
इसलिए, θ = `(5pi)/6` और |r = 4|
समझें कि, z का ध्रुवीय रूप r[cosθ + isinθ] है।
ध्रुवीय रूप को हल करें।
⇒ z = `4[cos (5pi)/6 + i sin (5pi)/6]`
= `4[cos (pi - pi/6) + i sin(pi - pi/6)]`
= `4[- cos pi/6 + i sin pi/6]`
= `4[(-sqrt(3))/2 + i 1/2]`
= `-2sqrt(3) + 2i`
इसलिए, z = `-2sqrt(3) + 2i`
z का मान `-2sqrt(3) + 2i` है।
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए
-3
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
`sqrt3 + i`
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए
i
यदि `(2z + 1)/(iz + 1)` का काल्पनिक भाग –2 है, तो दर्शाइए कि z को आर्गंड तल में निरूपित करने वाले बिंदु का बिंदु पथ एक सरल रेखा है।
मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार है कि `barz_1 + ibarz_2` = 0 है तथा arg (z1 z2) = π, तब arg (z1) ज्ञात कीजिए।
मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |z1 + x2| = |z1| + |z2| तब दर्शाइए कि arg(z1) – arg(z2) = 0
यदि |z| = 2 और arg(z) = `pi/4` है, तो z = ______ है।
arg(z) = `pi/3` को संतुष्ट करने वाले z का बिंदु पथ ______ है।
सम्मिश्र संख्या (i25)3 का ध्रुवीय रूप क्या है?
`sin pi/5 + i(1 - cos pi/5)` का कोणांक है
यदि a = cosθ + isinθ है, तो `(1 + "a")/(1 - "a")` का मान ज्ञात कीजिए।
यदि arg(z − 1) = arg(z + 3i) है, तो x − 1 : y ज्ञात कीजिए, जहाँ z = x + iy
यदि सम्मिश्र संख्या z1 और z2 के लिए, arg(z1) − arg(z2) = 0, तब दर्शाइए कि `|z_1 - z_2| = |z_1| - |z_2|`
सम्मिश्र संख्या z = `(1 - i)/(cos pi/3 + i sin pi/3)` को ध्रुवीय रूप में लिखिए।
यदि z और w दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |zw| = 1 और arg(z) − arg(w) = `π/2`, तो दर्शाइए कि `barz`w = –i
arg(z) + arg`barz (barz ≠ 0)` ______ है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
मान लीजिए कि z1 और z2 दो ऐसी सम्मिश्र संख्याएँ हैं कि |z1 + z2| = |z1| + |z2| तब arg(z1 – z2) = 0
`(1 + isqrt3)^2` का मुख्य कोणांक ज्ञात कीजिए।
|z1 + z2| = |z1| + |z2| संभव है, यदि
जब x < 0 तो arg(x) का मान है