Advertisements
Advertisements
प्रश्न
यदि z और w दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |zw| = 1 और arg(z) − arg(w) = `π/2`, तो दर्शाइए कि `barz`w = –i
उत्तर
मानो z = |z| (cosθ1 + isinθ1) और w = |w| (cosθ2 + isinθ2)
मान लीजिये, |zw| = |z||w| = 1, और arg(z) - arg(w) = `pi/2`
arg(z) – arg(w) = `pi/2`
⇒ θ1 – θ2 = `pi/2`
`overline(zw) = |z|(costheta_1 - isintheta_1)|w|(costheta_2 - isintheta_2)`
= `|z||w|(cos(-theta_1) - isin(-theta_1))(cos(theta_2) + isin(theta_2))`
आगे सरलीकृत करें,
= `1[cos(theta_2 - theta_1) + isin(theta_2 - theta_1)]`
= `[cos(-pi/2) + isin(-pi/2)]`
= 1[0 – i]
= –i
इसलिए, यह सिद्ध होता है कि |zw| = –i
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
-1 – i
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए
-3
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
`sqrt3 + i`
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए
i
यदि `(2z + 1)/(iz + 1)` का काल्पनिक भाग –2 है, तो दर्शाइए कि z को आर्गंड तल में निरूपित करने वाले बिंदु का बिंदु पथ एक सरल रेखा है।
मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार है कि `barz_1 + ibarz_2` = 0 है तथा arg (z1 z2) = π, तब arg (z1) ज्ञात कीजिए।
मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |z1 + x2| = |z1| + |z2| तब दर्शाइए कि arg(z1) – arg(z2) = 0
यदि |z| = 2 और arg(z) = `pi/4` है, तो z = ______ है।
arg(z) = `pi/3` को संतुष्ट करने वाले z का बिंदु पथ ______ है।
सम्मिश्र संख्या (i25)3 का ध्रुवीय रूप क्या है?
`sin pi/5 + i(1 - cos pi/5)` का कोणांक है
यदि a = cosθ + isinθ है, तो `(1 + "a")/(1 - "a")` का मान ज्ञात कीजिए।
यदि arg(z − 1) = arg(z + 3i) है, तो x − 1 : y ज्ञात कीजिए, जहाँ z = x + iy
यदि सम्मिश्र संख्या z1 और z2 के लिए, arg(z1) − arg(z2) = 0, तब दर्शाइए कि `|z_1 - z_2| = |z_1| - |z_2|`
यदि |z| = 4 और arg(z) = `(5π)/6`, तो z = ______
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
मान लीजिए कि z1 और z2 दो ऐसी सम्मिश्र संख्याएँ हैं कि |z1 + z2| = |z1| + |z2| तब arg(z1 – z2) = 0
z ज्ञात कीजिए, यदि |z| = 4 और arg(z) = `(5pi)/6`
`(1 + isqrt3)^2` का मुख्य कोणांक ज्ञात कीजिए।
|z1 + z2| = |z1| + |z2| संभव है, यदि
जब x < 0 तो arg(x) का मान है