English
Karnataka Board PUCPUC Science Class 11

A Circular Disc a of Radius R is Made from an Iron Plate of Thickness T and Another Circular Disc B of Radius 4r is Made from an Iron Plate of Thickness T/4 - Physics

Advertisements
Advertisements

Question

A circular disc A of radius r is made from an iron plate of thickness t and another circular disc B of radius 4r is made from an iron plate of thickness t/4. The relation between the moments of inertia IA and IB is __________ .

Options

  • IA > IB

  • IA = IB

  • IA < IB

  • depends on the actual values of t and r

MCQ
Fill in the Blanks

Solution

IA < IB

 

Moment of inertia of circular disc of radius r:
= \[\frac{1}{2}m r^2\]

Mass = Volume × Density

Volume of disc = \[\pi r^2 t\]

Here, t is the thickness of the disc.

As density is same for both the rods, we have

Moment of inertia,

\[I \propto\text{ thickness }\times  \left(\text{radius} \right)^4\]

\[\frac{I_A}{I_B} = \frac{t . \left( r \right)^4}{\frac{t}{4} \left( 4r \right)^4} < 1\] 

\[ \Rightarrow \frac{I_A}{I_B} < 1\]

\[\Rightarrow  I_A  <  I_B\]

shaalaa.com
Values of Moments of Inertia for Simple Geometrical Objects (No Derivation)
  Is there an error in this question or solution?
Chapter 10: Rotational Mechanics - MCQ [Page 193]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 10 Rotational Mechanics
MCQ | Q 11 | Page 193

RELATED QUESTIONS

If the ice at the poles melts and flows towards the equator, how will it affect the duration of day-night?


A hollow sphere, a solid sphere, a disc and a ring all having same mass and radius are rolled down on an inclined plane. If no slipping takes place, which one will take the smallest time to cover a given length?


A cubical block of mass M and edge a slides down a rough inclined plane of inclination θ with a uniform velocity. The torque of the normal force on the block about its centre has a magnitude


A thin circular ring of mass M and radius r is rotating about its axis with an angular speed ω. Two particles having mass m each are now attached at diametrically opposite points. The angular speed of the ring will become


The centre of a wheel rolling on a plane surface moves with a speed \[\nu_0\] A particle on the rim of the wheel at the same level as the centre will be moving at speed ___________ .


A wheel of radius 20 cm is pushed to move it on a rough horizontal surface. If is found to move through a distance of 60 cm on the road during the time it completes one revolution about the centre. Assume that the linear and the angular accelerations are uniform. The frictional force acting on the wheel by the surface is ______________________ .


A solid sphere, a hollow sphere and a disc, all having same mass and radius, are placed at the top of a smooth incline and released. Least time will be taken in reaching the bottom by _________ .


In the previous question, the smallest kinetic energy at
the bottom of the incline will be achieved by ___________ .


Consider a wheel of a bicycle rolling on a level road at a linear speed \[\nu_0\] (see the following figure)

(a) the speed of the particle A is zero

(b) the speed of B, C and D are all equal to \[v_0\]

(c) the speed of C is 2 \[v_0\]

(d) the speed of B is greater than the speed of O.


Three particles, each of mass 200 g, are kept at the corners of an equilateral triangle of side 10 cm. Find the moment of inertial of the system about an axis joining two of the particles.


Three particles, each of mass 200 g, are kept at the corners of an equilateral triangle of side 10 cm. Find the moment of inertial of the system about an axis passing through one of the particles and perpendicular to the plane of the particles.


Particles of masses 1 g, 2 g, 3 g, .........., 100 g are kept at the marks 1 cm, 2 cm, 3 cm, ..........., 100 cm respectively on a metre scale. Find the moment of inertia of the system of particles about a perpendicular bisector of the metre scale.


Find the moment of inertia of a pair of spheres, each having a mass mass m and radius r, kept in contact about the tangent passing through the point of contact.


Find the moment of inertia of a uniform square plate of mass m and edge a about one of its diagonals.


Suppose the rod in the previous problem has a mass of 1 kg distributed uniformly over its length.

(a) Find the initial angular acceleration of the rod.

(b) Find the tension in the supports to the blocks of mass 2 kg and 5 kg.


The following figure shows two blocks of mass m and M connected by a string passing over a pulley. The horizontal table over which the mass m slides is smooth. The pulley has a radius r and moment of inertia I about its axis and it can freely rotate about this axis. Find the acceleration of the mass M assuming that the string does not slip on the pulley.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×