English
Karnataka Board PUCPUC Science Class 11

Equal Torques Act on the Disc a and B of the Previous Problem, Initially Both Being at Rest - Physics

Advertisements
Advertisements

Question

Equal torques act on the disc A and B of the previous problem, initially both being at rest. At a later instant, the linear speeds of a point on the rim of A and another point on the rim of B are \[\nu_A\] and \[\nu_B\] respectively. We have

Options

  • \[\nu_A>\nu_B\]

  • \[\nu_A=\nu_B\]

  • \[\nu_A<\nu_B\]

  • the relation depends on the actual magnitude of the torques

MCQ

Solution

\[\nu_A>\nu_B\]

 

\[\tau = I\alpha  \left(\text{magnitude} \right)\]

For equal torque, we have

\[I_A  \alpha_A  =  I_B  \alpha_B\]

IA < IB

⇒ \[\alpha_A  >  \alpha_B  ...........(1)\]

Now,

\[\omega = \alpha t\]

Or,

\[\frac{v}{r} = \alpha t\]

\[\nu_A    >    \nu_B.............\left(\text{Using (1)}\right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Rotational Mechanics - MCQ [Page 193]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 10 Rotational Mechanics
MCQ | Q 12 | Page 193

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the components along the x, y, z axes of the angular momentum of a particle, whose position vector is with components x, y, z and momentum is with components px, py and 'p_z`. Show that if the particle moves only in the x-y plane the angular momentum has only a z-component.


Two particles, each of mass m and speed v, travel in opposite directions along parallel lines separated by a distance d. Show that the angular momentum vector of the two particle system is the same whatever be the point about which the angular momentum is taken.


A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad s–1. The radius of the cylinder is 0.25 m. What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of the angular momentum of the cylinder about its axis?


Explain why friction is necessary to make the disc in Figure roll in the direction indicated

(a) Give the direction of frictional force at B, and the sense of frictional torque, before perfect rolling begins.

(b) What is the force of friction after perfect rolling begins?


If several forces act on a particle, the total torque on the particle may be obtained by first finding the resultant force and then taking torque of this resultant. Prove this. Is this result valid for the forces acting on different particles of a body in such a way that their lines of action intersect at a common point?


A rectangular brick is kept on a table with a part of its length projecting out. It remains at rest if the length projected is slightly less than half the total length but it falls down if the length projected is slightly more than half the total length. Give reason.


When a body is weighed on an ordinary balance we demand that the arum should be horizontal if the weights on the two pans are equal. Suppose equal weights are put on the two pans, the arm is kept at an angle with the horizontal and released. Is the torque of the two weights about the middle point (point of support) zero? Is the total torque zero? If so, why does the arm rotate and finally become horizontal?


When a force of 6⋅0 N is exerted at 30° to a wrench at a distance of 8 cm from the nut it is just able to loosen the nut. What force F would be sufficient to loosen it if it acts perpendicularly to the wrench at 16 cm from the nut?


A flywheel of moment of inertia 5⋅0 kg-m2 is rotated at a speed of 60 rad/s. Because of the friction at the axle it comes to rest in 5⋅0 minutes. Find (a) the average torque of the friction (b) the total work done by the friction and (c) the angular momentum of the wheel 1 minute before it stops rotating.


Define torque and mention its unit.


A particle of mass 5 units is moving with a uniform speed of v = `3sqrt 2` units in the XOY plane along the line y = x + 4. Find the magnitude of angular momentum


A particle of mass m is moving in yz-plane with a uniform velocity v with its trajectory running parallel to + ve y-axis and intersecting z-axis at z = a (Figure). The change in its angular momentum about the origin as it bounces elastically from a wall at y = constant is ______.


A Merry-go-round, made of a ring-like platform of radius R and mass M, is revolving with angular speed ω. A person of mass M is standing on it. At one instant, the person jumps off the round, radially away from the centre of the round (as seen from the round). The speed of the round afterwards is ______.


Choose the correct alternatives:

  1. For a general rotational motion, angular momentum L and angular velocity ω need not be parallel.
  2. For a rotational motion about a fixed axis, angular momentum L and angular velocity ω are always parallel.
  3. For a general translational motion , momentum p and velocity v are always parallel.
  4. For a general translational motion, acceleration a and velocity v are always parallel.

Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω2 and ω2 are brought into contact face to face with their axes of rotation coincident.

  1. Does the law of conservation of angular momentum apply to the situation? why?
  2. Find the angular speed of the two-disc system.
  3. Calculate the loss in kinetic energy of the system in the process.
  4. Account for this loss.

A particle of mass 'm' is moving in time 't' on a trajectory given by

`vecr  = 10alphat^2hati + 5beta(t - 5)hatj`

Where α and β are dimensional constants.

The angular momentum of the particle becomes the same as it was for t = 0 at time t = ______ seconds.


The magnitude of the torque on a particle of mass 1 kg is 2.5 Nm about the origin. If the force acting on it is 1 N, and the distance of the particle from the origin is 5 m, the angle between the force and the position vector is (in radians) ______.


A solid sphere is rotating in free space. If the radius of the sphere is increased while keeping the mass the same, which one of the following will not be affected?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×