हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Equal Torques Act on the Disc a and B of the Previous Problem, Initially Both Being at Rest - Physics

Advertisements
Advertisements

प्रश्न

Equal torques act on the disc A and B of the previous problem, initially both being at rest. At a later instant, the linear speeds of a point on the rim of A and another point on the rim of B are \[\nu_A\] and \[\nu_B\] respectively. We have

विकल्प

  • \[\nu_A>\nu_B\]

  • \[\nu_A=\nu_B\]

  • \[\nu_A<\nu_B\]

  • the relation depends on the actual magnitude of the torques

MCQ

उत्तर

\[\nu_A>\nu_B\]

 

\[\tau = I\alpha  \left(\text{magnitude} \right)\]

For equal torque, we have

\[I_A  \alpha_A  =  I_B  \alpha_B\]

IA < IB

⇒ \[\alpha_A  >  \alpha_B  ...........(1)\]

Now,

\[\omega = \alpha t\]

Or,

\[\frac{v}{r} = \alpha t\]

\[\nu_A    >    \nu_B.............\left(\text{Using (1)}\right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Rotational Mechanics - MCQ [पृष्ठ १९३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 10 Rotational Mechanics
MCQ | Q 12 | पृष्ठ १९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Two particles, each of mass m and speed v, travel in opposite directions along parallel lines separated by a distance d. Show that the angular momentum vector of the two particle system is the same whatever be the point about which the angular momentum is taken.


Explain why friction is necessary to make the disc in Figure roll in the direction indicated

(a) Give the direction of frictional force at B, and the sense of frictional torque, before perfect rolling begins.

(b) What is the force of friction after perfect rolling begins?


The torque of the weight of any body about any vertical axis is zero. If it always correct?


If several forces act on a particle, the total torque on the particle may be obtained by first finding the resultant force and then taking torque of this resultant. Prove this. Is this result valid for the forces acting on different particles of a body in such a way that their lines of action intersect at a common point?


If the resultant torque of all the forces acting on a body is zero about a point, is it necessary that it will be zero about any other point?


A body is in translational equilibrium under the action of coplanar forces. If the torque of these forces is zero about a point, is it necessary that it will also be zero about any other point?


A rectangular brick is kept on a table with a part of its length projecting out. It remains at rest if the length projected is slightly less than half the total length but it falls down if the length projected is slightly more than half the total length. Give reason.


When a body is weighed on an ordinary balance we demand that the arum should be horizontal if the weights on the two pans are equal. Suppose equal weights are put on the two pans, the arm is kept at an angle with the horizontal and released. Is the torque of the two weights about the middle point (point of support) zero? Is the total torque zero? If so, why does the arm rotate and finally become horizontal?


A particle of mass m is projected with a speed u at an angle θ with the horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.


A cubical block of mass m and edge a slides down a rough inclined plane of inclination θ with a uniform speed. Find the torque of the normal force acting on the block about its centre.


A flywheel of moment of inertia 5⋅0 kg-m2 is rotated at a speed of 60 rad/s. Because of the friction at the axle it comes to rest in 5⋅0 minutes. Find (a) the average torque of the friction (b) the total work done by the friction and (c) the angular momentum of the wheel 1 minute before it stops rotating.


A particle is moving with a constant velocity along a line parallel to the positive X-axis. The magnitude of its angular momentum with respect to the origin is, ______


Define torque and mention its unit.


What are the conditions in which force can not produce torque?


State conservation of angular momentum.


A particle of mass 5 units is moving with a uniform speed of v = `3sqrt 2` units in the XOY plane along the line y = x + 4. Find the magnitude of angular momentum


A particle of mass m is moving in yz-plane with a uniform velocity v with its trajectory running parallel to + ve y-axis and intersecting z-axis at z = a (Figure). The change in its angular momentum about the origin as it bounces elastically from a wall at y = constant is ______.


Angular momentum of a single particle moving with constant speed along the circular path ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×