हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Flywheel of Moment of Inertia 5⋅0 Kg-m2 is Rotated at a Speed of 60 Rad/S. Because of the Friction at the Axle, It Comes to Rest in 5⋅0 Minutes. - Physics

Advertisements
Advertisements

प्रश्न

A flywheel of moment of inertia 5⋅0 kg-m2 is rotated at a speed of 60 rad/s. Because of the friction at the axle it comes to rest in 5⋅0 minutes. Find (a) the average torque of the friction (b) the total work done by the friction and (c) the angular momentum of the wheel 1 minute before it stops rotating.

योग

उत्तर

Let the angular deceleration produced due to frictional force be α.

Initial angular acceleration,

\[\omega_0  = 60  rad/s\]

Final angular velocity,

\[\omega = 0\]

t = 5 min =300 s

We know that

\[\omega =  \omega_0  + \alpha t\]

\[\Rightarrow \alpha =  - \frac{\omega_0}{t}\]

\[ \Rightarrow \alpha =  - \left( \frac{60}{300} \right) =  - \frac{1}{5}  rad/ s^2\]

(a) Torque produced by the frictional force (R),

\[\tau = I\alpha = 5 \times $\left( \frac{- 1}{5}

right)\]

= 1  N - m opposite to the rotation of wheel

(b) By conservation of energy,

Total work done in stopping the wheel by frictional force = Change in energy

\[W = \frac{1}{2}I \omega^2 \] 

\[       = \frac{1}{2} \times 5 \times \left( 60 \times 60 \right)\] 

\[       = 9000 \text{ joule }= 9  kJ\]

(c) Angular velocity after 4 minutes,

\[\omega =  \omega_0  + \alpha t\] 

\[         = 60 - \frac{4 \times 60}{5}\] 

\[         = \frac{60}{5} = 12  rad/s\]

So, angular momentum about the centre,

\[L = I\omega\] 

\[     = 5 \times 12 = 60  kg -  m^2 /s\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Rotational Mechanics - Exercise [पृष्ठ १९६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 10 Rotational Mechanics
Exercise | Q 25 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the components along the x, y, z axes of the angular momentum of a particle, whose position vector is with components x, y, z and momentum is with components px, py and 'p_z`. Show that if the particle moves only in the x-y plane the angular momentum has only a z-component.


A heavy particle of mass m falls freely near the earth's surface. What is the torque acting on this particle about a point 50 cm east to the line of motion? Does this torque produce any angular acceleration in the particle?


If several forces act on a particle, the total torque on the particle may be obtained by first finding the resultant force and then taking torque of this resultant. Prove this. Is this result valid for the forces acting on different particles of a body in such a way that their lines of action intersect at a common point?


A body is in translational equilibrium under the action of coplanar forces. If the torque of these forces is zero about a point, is it necessary that it will also be zero about any other point?


A ladder is resting with one end on a vertical wall and the other end on a horizontal floor. If it more likely to slip when a man stands near the bottom or near the top?


The density of a rod gradually decreases from one end to the other. It is pivoted at an end so that it can move about a vertical axis though the pivot. A horizontal force F is applied on the free end in a direction perpendicular to the rod. The quantities, that do not depend on which end of the rod is pivoted, are ________________ .


A particle of mass m is projected with a speed u at an angle θ with the horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.


A particle is moving with a constant velocity along a line parallel to the positive X-axis. The magnitude of its angular momentum with respect to the origin is, ______


A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N?


The ratio of the acceleration for a solid sphere (mass m and radius R) rolling down an incline of angle θ without slipping and slipping down the incline without rolling is, ______


Define torque and mention its unit.


A Merry-go-round, made of a ring-like platform of radius R and mass M, is revolving with angular speed ω. A person of mass M is standing on it. At one instant, the person jumps off the round, radially away from the centre of the round (as seen from the round). The speed of the round afterwards is ______.


Choose the correct alternatives:

  1. For a general rotational motion, angular momentum L and angular velocity ω need not be parallel.
  2. For a rotational motion about a fixed axis, angular momentum L and angular velocity ω are always parallel.
  3. For a general translational motion , momentum p and velocity v are always parallel.
  4. For a general translational motion, acceleration a and velocity v are always parallel.

A uniform sphere of mass m and radius R is placed on a rough horizontal surface (Figure). The sphere is struck horizontally at a height h from the floor. Match the following:

Column I Column II
(a) h = R/2 (i) Sphere rolls without slipping with a constant velocity and no loss of energy.
(b) h = R (ii) Sphere spins clockwise, loses energy by friction.
(c) h = 3R/2 (iii) Sphere spins anti-clockwise, loses energy by friction.
(d) h = 7R/5 (iv) Sphere has only a translational motion, looses energy by friction.

A door is hinged at one end and is free to rotate about a vertical axis (Figure). Does its weight cause any torque about this axis? Give reason for your answer.


Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω2 and ω2 are brought into contact face to face with their axes of rotation coincident.

  1. Does the law of conservation of angular momentum apply to the situation? why?
  2. Find the angular speed of the two-disc system.
  3. Calculate the loss in kinetic energy of the system in the process.
  4. Account for this loss.

A spherical shell of 1 kg mass and radius R is rolling with angular speed ω on horizontal plane (as shown in figure). The magnitude of angular momentum of the shell about the origin O is `a/3 R^2` ω. The value of a will be:


A solid sphere is rotating in free space. If the radius of the sphere is increased while keeping the mass the same, which one of the following will not be affected?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×