English
Karnataka Board PUCPUC Science Class 11

A Flywheel of Moment of Inertia 5⋅0 Kg-m2 is Rotated at a Speed of 60 Rad/S. Because of the Friction at the Axle, It Comes to Rest in 5⋅0 Minutes. - Physics

Advertisements
Advertisements

Question

A flywheel of moment of inertia 5⋅0 kg-m2 is rotated at a speed of 60 rad/s. Because of the friction at the axle it comes to rest in 5⋅0 minutes. Find (a) the average torque of the friction (b) the total work done by the friction and (c) the angular momentum of the wheel 1 minute before it stops rotating.

Sum

Solution

Let the angular deceleration produced due to frictional force be α.

Initial angular acceleration,

\[\omega_0  = 60  rad/s\]

Final angular velocity,

\[\omega = 0\]

t = 5 min =300 s

We know that

\[\omega =  \omega_0  + \alpha t\]

\[\Rightarrow \alpha =  - \frac{\omega_0}{t}\]

\[ \Rightarrow \alpha =  - \left( \frac{60}{300} \right) =  - \frac{1}{5}  rad/ s^2\]

(a) Torque produced by the frictional force (R),

\[\tau = I\alpha = 5 \times $\left( \frac{- 1}{5}

right)\]

= 1  N - m opposite to the rotation of wheel

(b) By conservation of energy,

Total work done in stopping the wheel by frictional force = Change in energy

\[W = \frac{1}{2}I \omega^2 \] 

\[       = \frac{1}{2} \times 5 \times \left( 60 \times 60 \right)\] 

\[       = 9000 \text{ joule }= 9  kJ\]

(c) Angular velocity after 4 minutes,

\[\omega =  \omega_0  + \alpha t\] 

\[         = 60 - \frac{4 \times 60}{5}\] 

\[         = \frac{60}{5} = 12  rad/s\]

So, angular momentum about the centre,

\[L = I\omega\] 

\[     = 5 \times 12 = 60  kg -  m^2 /s\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Rotational Mechanics - Exercise [Page 196]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 10 Rotational Mechanics
Exercise | Q 25 | Page 196

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the components along the x, y, z axes of the angular momentum of a particle, whose position vector is with components x, y, z and momentum is with components px, py and 'p_z`. Show that if the particle moves only in the x-y plane the angular momentum has only a z-component.


If the resultant torque of all the forces acting on a body is zero about a point, is it necessary that it will be zero about any other point?


A body is in translational equilibrium under the action of coplanar forces. If the torque of these forces is zero about a point, is it necessary that it will also be zero about any other point?


A ladder is resting with one end on a vertical wall and the other end on a horizontal floor. If it more likely to slip when a man stands near the bottom or near the top?


When a body is weighed on an ordinary balance we demand that the arum should be horizontal if the weights on the two pans are equal. Suppose equal weights are put on the two pans, the arm is kept at an angle with the horizontal and released. Is the torque of the two weights about the middle point (point of support) zero? Is the total torque zero? If so, why does the arm rotate and finally become horizontal?


A particle is moving with a constant velocity along a line parallel to the positive X-axis. The magnitude of its angular momentum with respect to the origin is, ______


State conservation of angular momentum.


A particle of mass 5 units is moving with a uniform speed of v = `3sqrt 2` units in the XOY plane along the line y = x + 4. Find the magnitude of angular momentum


A Merry-go-round, made of a ring-like platform of radius R and mass M, is revolving with angular speed ω. A person of mass M is standing on it. At one instant, the person jumps off the round, radially away from the centre of the round (as seen from the round). The speed of the round afterwards is ______.


Figure shows two identical particles 1 and 2, each of mass m, moving in opposite directions with same speed v along parallel lines. At a particular instant, r1 and r2 are their respective position vectors drawn from point A which is in the plane of the parallel lines. Choose the correct options:

  1. Angular momentum l1 of particle 1 about A is l1 = mvd1
  2. Angular momentum l2 of particle 2 about A is l2 = mvr2
  3. Total angular momentum of the system about A is l = mv(r1 + r2)
  4. Total angular momentum of the system about A is l = mv (d2 − d1)

⊗ represents a unit vector coming out of the page.

⊗ represents a unit vector going into the page.


The net external torque on a system of particles about an axis is zero. Which of the following are compatible with it?

  1. The forces may be acting radially from a point on the axis.
  2. The forces may be acting on the axis of rotation.
  3. The forces may be acting parallel to the axis of rotation.
  4. The torque caused by some forces may be equal and opposite to that caused by other forces.

A uniform cube of mass m and side a is placed on a frictionless horizontal surface. A vertical force F is applied to the edge as shown in figure. Match the following (most appropriate choice):

(a) mg/4 < F < mg/2 (i) Cube will move up.
(b) F > mg/2 (ii) Cube will not exhibit motion.
(c) F > mg (iii) Cube will begin to rotate and slip at A.
(d) F = mg/4 (iv) Normal reaction effectively at a/3 from A, no motion.

A uniform sphere of mass m and radius R is placed on a rough horizontal surface (Figure). The sphere is struck horizontally at a height h from the floor. Match the following:

Column I Column II
(a) h = R/2 (i) Sphere rolls without slipping with a constant velocity and no loss of energy.
(b) h = R (ii) Sphere spins clockwise, loses energy by friction.
(c) h = 3R/2 (iii) Sphere spins anti-clockwise, loses energy by friction.
(d) h = 7R/5 (iv) Sphere has only a translational motion, looses energy by friction.

Two discs of moments of inertia I1 and I2 about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed ω2 and ω2 are brought into contact face to face with their axes of rotation coincident.

  1. Does the law of conservation of angular momentum apply to the situation? why?
  2. Find the angular speed of the two-disc system.
  3. Calculate the loss in kinetic energy of the system in the process.
  4. Account for this loss.

A spherical shell of 1 kg mass and radius R is rolling with angular speed ω on horizontal plane (as shown in figure). The magnitude of angular momentum of the shell about the origin O is `a/3 R^2` ω. The value of a will be:


The position vector of 1 kg object is `vecr = (3hati - hatj)` m and its velocity `vecv = (3hati + hatk)` ms-1. The magnitude of its angular momentum is `sqrtx` Nm where x is ______.


A particle of mass 'm' is moving in time 't' on a trajectory given by

`vecr  = 10alphat^2hati + 5beta(t - 5)hatj`

Where α and β are dimensional constants.

The angular momentum of the particle becomes the same as it was for t = 0 at time t = ______ seconds.


Angular momentum of a single particle moving with constant speed along the circular path ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×