English

A cubical block of side 10 cm is surmounted by a hemisphere. What is the largest diameter that the hemisphere can have? Find the cost of painting the total surface area of the solid so formed, - Mathematics

Advertisements
Advertisements

Question

A cubical block of side 10 cm is surmounted by a hemisphere. What is the largest diameter that the hemisphere can have? Find the cost of painting the total surface area of the solid so formed, at the rate of Rs. 5 per 100 sq. cm. [Use π = 3.14]

 

Solution

Side of the cubical block, a = 10 cm
Longest diagonal of the cubical block = a√3 = 10√3 cm
Since the cube is surmounted by a hemisphere, therefore the side of the cube should be equal to the diameter of the hemisphere.
Diameter of the sphere = 10 cm
Radius of the sphere, r = 5 cm
Total surface area of the solid = Total surface area of the cube – Inner cross-section area of the hemisphere + Curved surface area of the hemisphere

`=6a^2-pir^2+2pir^2`

`=6a^2+pir^2`

`=6xx(10)^2+3.14xx5^2`

`=600+78.5=678.5 cm^2`

Total surface area of the solid = 678.5 cm2
Cost of painting 100 cm2 = Rs. 5
Cost of painting 1 cm2 = Rs.5/100
Cost of painting the total surface area of the solid =(5/100)× 678.5 = Rs. 33.925 ≈ Rs. 34.

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) All India Set 3

RELATED QUESTIONS

Water in a canal, 6 m wide and 1.5 m deep, is flowing at a speed of 4 km/h. How much area will it irrigate in 10 minutes, if 8 cm of standing water is needed for irrigation?


A metallic cylinder has radius 3 cm and height 5 cm. To reduce its weight, a conical hole is drilled in the cylinder. The conical hole has a radius of `3/2` cm and its depth is `8/9 `cm. Calculate the ratio of the volume of metal left in the cylinder to the volume of metal taken out in conical shape.


A solid metallic sphere of diameter 28 cm is melted and recast into a number of smaller cones, each of diameter  4 \[\frac{2}{3}\] cm and height 3 cm. Find the number of cones so formed.


Find the volume of a solid in the form of a right circular cylinder with hemi-spherical ends whose total length is 2.7 m and the diameter of each hemi-spherical end is 0.7 m.


A hemispherical bowl of internal diameter 30 cm contains some liquid. This liquid is to be poured into cylindrical bottles of diameter 5 cm and height 6 cm each. Find the number of bottles required.


Water is flowing through a cylindrical pipe of internal diameter 2 cm, into a cylindrical tank of base radius 40 cm, at the rate of 0.4 m per second. Determine the rise in level of water in the tank in half an hour.


In a village, a well with 10 m inside diameter, is dug 14 m deep. Earth taken out of it is spread all around to a width 5 m to form an embankment. Find the height of the embankment. What value of the villagers is reflected here? 


Match the following columns:

Column I Column II
(a) The radii of the circular ends of
a bucket, in the form of the frustum of a cone of height 30 cm, are 20 cm
and 10 cm respectively. The
capacity of the bucket is ........cm3.
(p) 2418π
(b) The radii of the circular ends
 of a conical bucket of height
15 cm are 20 and 12 cm
respectively. The slant height
of the bucket is ........ cm.
(q) 22000
(c) The radii of the circular ends of
a solid frustum of a cone are 33 cm
and 27 cm and its slant height is
10 cm. The total surface area of
the bucket is .........cm2.
(r) 12
(d) Three solid metallic spheres of
radii 3 cm, 4 cm and 5 cm are
melted to form a single solid
sphere. The diameter of the
resulting sphere is ........ cm.
(s) 17

In the figure given below, ABCD is a square of side 14 cm with E, F, G and H as the mid points of sides AB, BC, CD and DA respectively. The area of the shaded portion is ______.


The total surface area of a solid hemisphere of radius r is ________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×