Advertisements
Advertisements
Question
A hemispherical bowl of internal diameter 36 cm contains liquid. This liquid is filled into 72 cylindrical bottles of diameter 6 cm. Find the height of each bottle, if 10% liquid is wasted in this transfer.
Solution
Internal diameter of the bowl = 36 cm
Internal radius of the bowl, r = 18 cm
Volume of the liquid, V =(2/3)๐r3 =(2/3)× ๐ × 183
Let the height of the small bottle be ‘h’.
Diameter of a small cylindrical bottle = 6 cm
Radius of a small bottle, R = 3 cm
Volume of a single bottle = ๐R2h = ๐ × 32 × h
No. of small bottles, n = 72
Volume wasted in the transfer =(10/100)×(2/3)× ๐ × 183
Volume of liquid to be transferred in the bottles
`=2/3xxpixx18^3-10/100xx2/3xxpixx18^3`
`=2/3xxpixx18^3(1-10/100)`
`=2/3xxpixx18^3xx90/100`
we know that volume of cylinder =`pir^2h` so we get
`72(pir^2h)=(2/3xxpixx18^3xx90/100)`
`72=(2/3xxpixx18^3xx90/100)/(pixx3^2xxh)`
`72=(2/3xx18^3xx9/10)/(3^2xxh)`
`h=(2/3xxpixx18xx18xx18xx9/10)/(pixx3^2xx72) `
h=5.4 cm
Height of the small cylindrical bottle = 5.4 cm
APPEARS IN
RELATED QUESTIONS
If the total surface area of a solid hemisphere is 462 cm2 , find its volume.[Take π=22/7]
The largest possible sphere is carved out of a wooden solid cube of side 7 em. Find the volume of the wood left. (Use\[\pi = \frac{22}{7}\]).
Prove that the surface area of a sphere is equal to the curved surface area of the circumference cylinder__?
A frustum of a right circular cone has a diameter of base 20 cm, of top 12 cm, and height 3 cm. Find the area of its whole surface and volume.
The perimeters of the ends of a frustum of a right circular cone are 44 cm and 33 cm. If the height of the frustum be 16 cm, find its volume, the slant surface and the total surface.
A metallic cylinder has radius 3 cm and height 5 cm. To reduce its weight, a conical hole is drilled in the cylinder. The conical hole has a radius of `3/2` cm and its depth is `8/9 `cm. Calculate the ratio of the volume of metal left in the cylinder to the volume of metal taken out in conical shape.
Find the volume of a solid in the form of a right circular cylinder with hemi-spherical ends whose total length is 2.7 m and the diameter of each hemi-spherical end is 0.7 m.
A rocket is in the form of a circular cylinder closed at the lower end and a cone of the same radius is attached to the top. The radius of the cylinder is 2.5 m, its height is 21 m and the slant height of the cone is 8 m. Calculate the total surface area of the rocket.
A cone of height 24 cm and radius of base 6 cm is made up of modelling clay. A child reshapes it in the form of a sphere. Find the radius of the sphere and hence find the surface area of this sphere.
A tent is in the shape of a cylinder surmounted by a conical top. If the height and radius of the cylindrical part are 3 m and 14 m respectively, and the total height of the tent is 13.5 m, find the area of the canvas required for making the tent, keeping a provision of 26 m2 of canvas for stitching and wastage. Also, find the cost of the canvas to be purchased at the rate of โน 500 per m2.