English

A door is hinged at one end and is free to rotate about a vertical axis (Figure). Does its weight cause any torque about this axis? Give reason for your answer. - Physics

Advertisements
Advertisements

Question

A door is hinged at one end and is free to rotate about a vertical axis (Figure). Does its weight cause any torque about this axis? Give reason for your answer.

Short Note

Solution

According to the diagram, where weight of the door acts along the negative y-axis.

Torque is not produced by weight about the y-axis.

Because the direction of weight is parallel to the y-axis (axis of rotation).

A force can produce torque only along the direction normal to itself because f = r × F. So when the door is in the xy-plane, the torque produced by gravity can only be along ±z-direction never about an axis passing through the y-direction.

Hence, the weight will not produce any torque about the y-axis.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: System of Particles and Rotational Motion - Exercises [Page 54]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 7 System of Particles and Rotational Motion
Exercises | Q 7.21 | Page 54

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the components along the x, y, z axes of the angular momentum of a particle, whose position vector is with components x, y, z and momentum is with components px, py and 'p_z`. Show that if the particle moves only in the x-y plane the angular momentum has only a z-component.


When a body is weighed on an ordinary balance we demand that the arum should be horizontal if the weights on the two pans are equal. Suppose equal weights are put on the two pans, the arm is kept at an angle with the horizontal and released. Is the torque of the two weights about the middle point (point of support) zero? Is the total torque zero? If so, why does the arm rotate and finally become horizontal?


Equal torques act on the disc A and B of the previous problem, initially both being at rest. At a later instant, the linear speeds of a point on the rim of A and another point on the rim of B are \[\nu_A\] and \[\nu_B\] respectively. We have


When a force of 6⋅0 N is exerted at 30° to a wrench at a distance of 8 cm from the nut it is just able to loosen the nut. What force F would be sufficient to loosen it if it acts perpendicularly to the wrench at 16 cm from the nut?


A particle is moving with a constant velocity along a line parallel to the positive X-axis. The magnitude of its angular momentum with respect to the origin is, ______


Two discs of the same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of the disc with angular velocities ω1 and ω2. They are brought in to contact face to face coinciding with the axis of rotation. The expression for loss of energy during this process is, ______


The ratio of the acceleration for a solid sphere (mass m and radius R) rolling down an incline of angle θ without slipping and slipping down the incline without rolling is, ______


State conservation of angular momentum.


Figure shows two identical particles 1 and 2, each of mass m, moving in opposite directions with same speed v along parallel lines. At a particular instant, r1 and r2 are their respective position vectors drawn from point A which is in the plane of the parallel lines. Choose the correct options:

  1. Angular momentum l1 of particle 1 about A is l1 = mvd1
  2. Angular momentum l2 of particle 2 about A is l2 = mvr2
  3. Total angular momentum of the system about A is l = mv(r1 + r2)
  4. Total angular momentum of the system about A is l = mv (d2 − d1)

⊗ represents a unit vector coming out of the page.

⊗ represents a unit vector going into the page.


The magnitude of the torque on a particle of mass 1 kg is 2.5 Nm about the origin. If the force acting on it is 1 N, and the distance of the particle from the origin is 5 m, the angle between the force and the position vector is (in radians) ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×