Advertisements
Advertisements
Question
A garden is in the form of a rhombus whose side is 30 metres and the corresponding altitude is 16 m. Find the cost of levelling the garden at the rate of Rs 2 per m2.
Solution
Given:
Side of the rhombus shaped garden = 30 m
Altitude = 16 m
Now, area of a rhombus = side x Altitude
\[ \therefore\text{ Area of the given garden }=30\times16=480 m^2 \]
\[ {\text{ Also, it is given that the rate of levelling the garden is } \text{ Rs 2 per }1m}^2 .\]
\[ \therefore {\text{ Total cost of levelling the complete garden of area }480 m}^2 =480\times2= \text{ Rs }960\]
APPEARS IN
RELATED QUESTIONS
Find the area of a rhombus whose side is 5 cm and whose altitude is 4.8 cm. If one of its diagonals is 8 cm long, find the length of the other diagonal.
Mohan wants to buy a trapezium shaped field. Its side along the river is parallel to and twice the side along the road. It the area of this field is 10500 m2 and the perpendicular distance between the two parallel sides is 100 m, find the length of the side along the river.
A flooring tile has the shape of a parallelogram whose base is 24 cm and the corresponding height is 10 cm. How many such tiles are required to cover a floor of area 1080 m2?
The diagonals of a rhombus are 7.5 cm and 12 cm. Find its area.
The floor of a building consists of 3000 tiles which are rhombus shaped and each of its diagonals are 45 cm and 30 cm in length. Find the total cost of polishing the floor, if the cost per m2 is Rs 4.
Find the area of a rhombus, each side of which measures 20 cm and one of whose diagonals is 24 cm.
Find the area of the following regular hexagon.
Polygon ABCDE is divided in different parts as shown in figure. If AD = 8 cm, AH = 6 cm, AG = 4 cm, AF = 3 cm and BF = 2 cm, CH = 3cm, EG = 2.5 cm. Then find the area of the polygon.

A regular hexagon is inscribed in a circle of radius r. The perimeter of the regular hexagon is ______.