Advertisements
Advertisements
Question
Find the area of a rhombus, each side of which measures 20 cm and one of whose diagonals is 24 cm.
Solution
Given:
Side of the rhombus = 20 cm
Length of a diagonal = 24 cm
We know: If `d_1` and `d_2` are the lengths of the diagonals of the rhombus, then
side of the rhombus\[= \frac{1}{2}\sqrt{d_1^2 + d_2^2}\]
So, using the given data to find the length of the other diagonal of the rhombus:
\[20 = \frac{1}{2}\sqrt{{24}^2 + d_2^2}\]
\[40 = \sqrt{{24}^2 + d_2^2}\]
Squaring both sides to get rid of the square root sign:
\[ {40}^2 = {24}^2 + d_2^2 \]
\[ d_2^2 =1600-576=1024\]
\[ d_2 =\sqrt{1024}=32 cm\]
∴ Area of the rhombus \[=\frac{1}{2}(24 \times 32) = 384 {cm}^2\]
APPEARS IN
RELATED QUESTIONS
Find the area of a rhombus whose side is 5 cm and whose altitude is 4.8 cm. If one of its diagonals is 8 cm long, find the length of the other diagonal.
There is a pentagonal shaped park as shown in the figure. For finding its area Jyoti and Kavita divided it in two different ways.
Find the area of this park using both ways. Can you suggest some other way of finding its area?
The area of a rhombus is 240 cm2 and one of the diagonal is 16 cm. Find another diagonal.
Find the area of a rhombus whose side is 6 cm and whose altitude is 4 cm. If one of its diagonals is 8 cm long, find the length of the other diagonal.
A rectangular grassy plot is 112 m long and 78 m broad. It has a gravel path 2.5 m wide all around it on the side. Find the area of the path and the cost of constructing it at Rs 4.50 per square metre.
In exchange of a square plot one of whose sides is 84 m, a man wants to buy a rectangular plot 144 m long and of the same area as of the square plot. Find the width of the rectangular plot.
A garden is in the form of a rhombus whose side is 30 metres and the corresponding altitude is 16 m. Find the cost of levelling the garden at the rate of Rs 2 per m2.
A field in the form of a rhombus has each side of length 64 m and altitude 16 m. What is the side of a square field which has the same area as that of a rhombus?
Polygon ABCDE is divided in different parts as shown in figure. If AD = 8 cm, AH = 6 cm, AG = 4 cm, AF = 3 cm and BF = 2 cm, CH = 3cm, EG = 2.5 cm. Then find the area of the polygon.
A regular hexagon is inscribed in a circle of radius r. The perimeter of the regular hexagon is ______.