English
Karnataka Board PUCPUC Science Class 11

A Long, Straight Wire is Fixed Horizontally and Carries a Current of 50.0 A. a Second Wire Having Linear Mass Density 1.0 × 10−4 Kg M−1 is Placed Parallel to and Directly Above this Wire - Physics

Advertisements
Advertisements

Question

A long, straight wire is fixed horizontally and carries a current of 50.0 A. A second wire having linear mass density 1.0 × 10−4 kg m−1 is placed parallel to and directly above this wire at a separation of 5.0 mm. What current should this second wire carry such that the magnetic repulsion can balance its weight? 

Short Note

Solution

Given:
Magnitude of current, i1 = 10 A
Separation between two wires, d = 5 mm
Linear mass density of the second wire, λ = 1.0 × 10−4 kgm−1 
Now,
Let i2 be the current in the second wire in opposite direction.
Thus, the magnetic force per unit length on the wire due to a parallel current-carrying wire is given by

\[\frac{F_m}{l} = \frac{\mu_0 i_1 i_2}{2\pi d}\]   (upwards)
Also,
Weight of the second wire, W = mg
Weight per unit length of the second wire,
\[\frac{W}{l}   =   \lambda g\]  (downwards)
Now, according to the question,
\[\frac{F_m}{l} = \frac{W}{l}\]
\[ \Rightarrow \frac{\mu_0 i_1 i_2}{2\pi d} = \lambda g\]
\[\Rightarrow \frac{2 \times {10}^{- 7} \times 50 \times i_2}{5 \times {10}^{- 3}} = 1 \times {10}^{- 4} \times 9 . 8\]
\[ \Rightarrow i_2 = \frac{9 . 8 \times {10}^{- 7}}{20 \times {10}^{- 7}} = 0 . 49\] A
shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Magnetic Field due to a Current - Exercises [Page 251]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 13 Magnetic Field due to a Current
Exercises | Q 30 | Page 251

RELATED QUESTIONS

Sketch the change in flux, emf and force when a conducting rod PQ of resistance R and length l moves freely to and fro between A and C with speed v on a rectangular conductor placed in uniform magnetic field as shown in the figure


A short bar magnet of magnetic moment 0.9 J/T is placed with its axis at 30° to a uniform magnetic field. It experiences a torque of 0.063 J.

(i) Calculate the magnitude of the magnetic field.

(ii) In which orientation will the bar magnet be in stable equilibrium in the magnetic field?


Can a charged particle be accelerated by a magnetic field? Can its speed be increased?


Which of the following particles will have minimum frequency of revolution when projected with the same velocity perpendicular to a magnetic field?


A vertical wire carries a current in upward direction. An electron beam sent horizontally towards the wire will be deflected


A wire of length l carries a current i long the x-axis. A magnetic field exists, which is given as `vecB = B_0 (veci + vecj + veck)`  T. Find the magnitude of the magnetic force acting on the wire.


Consider a straight piece of length x of a wire carrying a current i. Let P be a point on the perpendicular bisector of the piece, situated at a distance d from its middle point. Show that for d >> x, the magnetic field at P varies as 1/d2 whereas for d << x, it varies as 1/d.  


The wire ABC shown in figure forms an equilateral triangle. Find the magnetic field B at the centre O of the triangle assuming the wire to be uniform. 


Two infinitely long current carrying conductors X and Y are kept parallel to each other, 24 cm apart in a vacuum. They carry currents of 5A and 7A respectively, in the same direction, as shown in the figure below. Find the position of a neutral point, i.e., a point where resultant magnetic flux density is zero. (Ignore earth’s magnetic field). 


A straight horizontal conducting rod of length 0.45 m and mass 60 g is suspended by two vertical wires at its ends. A current of 5.0 A is set up in the rod through the wires.

(a) What magnetic field should be set up normal to the conductor in order that the tension in the wires is zero?

(b) What will be the total tension in the wires if the direction of current is reversed keeping the magnetic field same as before?
(Ignore the mass of the wires) g = 9.8 m s–2.


Correct expression for force on a current carrying conductor of length dl in a magnetic field is ______.


An electron is projected with uniform velocity along the axis of a current carrying long solenoid. Which of the following is true?


When a magnetic compass needle is carried nearby to a straight wire carrying current, then

  1. the straight wire cause a noticeable deflection in the compass needle.
  2. the alignment of the needle is tangential to an imaginary circle with straight wire as its centre and has a plane perpendicular to the wire.

A charged particle is moving on circular path with velocity v in a uniform magnetic field B, if the velocity of the charged particle is doubled and strength of magnetic field is halved, then radius becomes ______.


A current of 3 A is flowing in a linear conductor having a length of 40 cm. The conductor is placed in a magnetic field of strength of 500 gauss and makes an angle of 30° with the direction of the field. It experiences a force of magnitude:


A straight conductor of length 2m moves at a speed of 20 m/s. When the conductor makes an angle of 30° with the direction of magnetic field of induction of 0.1 wbm2 then induced emf:


A conducting ring of radius 1m kept in a uniform magnetic field B of 0.01 T, rotates uniformly with an angular velocity 100 rad s−1 with its axis of rotation perpendicular to B. The maximum induced emf in it is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×