English
Karnataka Board PUCPUC Science Class 11

Consider a Straight Piece of Length X Of a Wire Carrying a Current I. Let P Be a Point on the Perpendicular Bisector of the Piece, Situated at a Distance D From Its Middle Point. - Physics

Advertisements
Advertisements

Question

Consider a straight piece of length x of a wire carrying a current i. Let P be a point on the perpendicular bisector of the piece, situated at a distance d from its middle point. Show that for d >> x, the magnetic field at P varies as 1/d2 whereas for d << x, it varies as 1/d.  

Short Note

Solution

Let AB be the wire of length x with midpoint O.
Given: 
Magnitude of current = i 
Separation of the point from the wire = d 

Now,
The magnetic field on a perpendicular bisector is given by

\[B = \frac{\mu_0 i}{4\pi d}(\sin\theta + \sin\theta)\]
\[B = \frac{\mu_0 i}{4\pi d}\frac{2x}{\sqrt{x^2 + 4 d^2}}\]
So, if  d > > x (neglecting x), then
 
\[B = \frac{\mu_0 i}{4\pi d}\frac{2x}{2d}\]
\[ \Rightarrow B \propto \frac{1}{d^2}\]
And, if d < < x (neglecting d), then
 
\[B = \frac{\mu_0 i}{4\pi d}\frac{2x}{x}\]
\[ \Rightarrow B \propto \frac{1}{d}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Magnetic Field due to a Current - Exercises [Page 250]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 13 Magnetic Field due to a Current
Exercises | Q 14 | Page 250

RELATED QUESTIONS

Sketch the change in flux, emf and force when a conducting rod PQ of resistance R and length l moves freely to and fro between A and C with speed v on a rectangular conductor placed in uniform magnetic field as shown in the figure


Which of the following particles will have minimum frequency of revolution when projected with the same velocity perpendicular to a magnetic field?


A particle moves in a region with a uniform magnetic field and a parallel, uniform electric field. At some instant, the velocity of the particle is perpendicular to the field direction. The path of the particle will be


You are facing a circular wire carrying an electric current. The current is clockwise as seen by you. Is the field at the centre coming towards you or going away from you?


Two parallel wires carry currents of 20 A and 40 A in opposite directions. Another wire carying a current anti parallel to 20 A is placed midway between the two wires. T he magnetic force on it will be


A wire of length l carries a current i long the x-axis. A magnetic field exists, which is given as `vecB = B_0 (veci + vecj + veck)`  T. Find the magnitude of the magnetic force acting on the wire.


A rigid wire consists of a semi-circular portion of radius R and two straight sections (figure). The wire is partially immersed in a perpendicular magnetic field B, as shown in the figure. Find the magnetic force on the wire if it carries a current i.


Consider a non-conducting plate of radius r and mass m that has a charge q distributed uniformly over it. The plate is rotated about its axis with an angular speed ω. Show that the magnetic moment µ and the angular momentum l of the plate are related as `mu = q/(2 m)l`


Consider a solid sphere of radius r and mass m that has a charge q distributed uniformly over its volume. The sphere is rotated about its diameter with an angular speed ω. Show that the magnetic moment µ and the angular momentum l of the sphere are related as `mu = q/(2m) l`


The wire ABC shown in figure forms an equilateral triangle. Find the magnetic field B at the centre O of the triangle assuming the wire to be uniform. 


Figure shows a part of an electric circuit. The wires AB, CD and EF are long and have identical resistance. The  separation between the neighbouring wires is 1.0 cm. The wires AE and BF have negligible resistance and the ammeter reads 30 A. Calculate the magnetic force per unit length of AB and CD. 


Consider the situation shown in the figure. Suppose the circular loop lies in a vertical plane. The rod has a mass m. The rod and the loop have negligible resistances but the wire connecting O and C has a resistance R. The rod is made to rotate with a uniform angular velocity ω in the clockwise direction by applying a force at the midpoint of OA in a direction perpendicular to it. Find the magnitude of this force when the rod makes an angle θ with the vertical.


In the circuit shown in the figure, find the value of the current shown in the ammeter A.


A straight horizontal conducting rod of length 0.45 m and mass 60 g is suspended by two vertical wires at its ends. A current of 5.0 A is set up in the rod through the wires.

(a) What magnetic field should be set up normal to the conductor in order that the tension in the wires is zero?

(b) What will be the total tension in the wires if the direction of current is reversed keeping the magnetic field same as before?
(Ignore the mass of the wires) g = 9.8 m s–2.


When a magnetic compass needle is carried nearby to a straight wire carrying current, then

  1. the straight wire cause a noticeable deflection in the compass needle.
  2. the alignment of the needle is tangential to an imaginary circle with straight wire as its centre and has a plane perpendicular to the wire.

A small object with charge q and weight mg is attached to one end of a string of length ‘L’ attached to a stationary support. The system is placed in a uniform horizontal electric field ‘E’, as shown in the accompanying figure. In the presence of the field, the string makes a constant angle θ with the vertical. The sign and magnitude of q ______.


A conducting loop of resistance R and radius r has its centre at the origin of the coordinate system in a magnetic field of induction B. When it is rotated about y-axis through 90°, the net charge flown in the loop is directly proportional to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×