English
Karnataka Board PUCPUC Science Class 11

You Are Facing a Circular Wire Carrying an Electric Current. the Current is Clockwise as Seen by You. is the Field at the Centre Coming Towards You Or Going Away from You? - Physics

Advertisements
Advertisements

Question

You are facing a circular wire carrying an electric current. The current is clockwise as seen by you. Is the field at the centre coming towards you or going away from you?

Short Note

Solution

According to the right-hand thumb rule, if we curl the fingers of our right hand in the direction of the current flowing, then the thumb will point in the direction of the magnetic field developed due to it and vice versa. Therefore, in this case, the field at the centre is going away from us. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Magnetic Field due to a Current - Short Answers [Page 248]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 13 Magnetic Field due to a Current
Short Answers | Q 3 | Page 248

RELATED QUESTIONS

A small compass needle of magnetic moment ‘m’ is free to turn about an axis perpendicular to the direction of uniform magnetic field ‘B’. The moment of inertia of the needle about the axis is ‘I’. The needle is slightly disturbed from its stable position and then released. Prove that it executes simple harmonic motion. Hence deduce the expression for its time period.


Can a charged particle be accelerated by a magnetic field? Can its speed be increased?


A particle moves in a region with a uniform magnetic field and a parallel, uniform electric field. At some instant, the velocity of the particle is perpendicular to the field direction. The path of the particle will be


A vertical wire carries a current in upward direction. An electron beam sent horizontally towards the wire will be deflected


A wire of length l carries a current i long the x-axis. A magnetic field exists, which is given as `vecB = B_0 (veci + vecj + veck)`  T. Find the magnitude of the magnetic force acting on the wire.


Consider a non-conducting plate of radius r and mass m that has a charge q distributed uniformly over it. The plate is rotated about its axis with an angular speed ω. Show that the magnetic moment µ and the angular momentum l of the plate are related as `mu = q/(2 m)l`


A long wire carrying a current i is bent to form a place along α . Find the magnetic field B at a point on the bisector of this angle situated at a distance x from the vertex.


A long, straight wire is fixed horizontally and carries a current of 50.0 A. A second wire having linear mass density 1.0 × 10−4 kg m−1 is placed parallel to and directly above this wire at a separation of 5.0 mm. What current should this second wire carry such that the magnetic repulsion can balance its weight? 


In the circuit shown in the figure, find the value of the current shown in the ammeter A.


A straight horizontal conducting rod of length 0.45 m and mass 60 g is suspended by two vertical wires at its ends. A current of 5.0 A is set up in the rod through the wires.

(a) What magnetic field should be set up normal to the conductor in order that the tension in the wires is zero?

(b) What will be the total tension in the wires if the direction of current is reversed keeping the magnetic field same as before?
(Ignore the mass of the wires) g = 9.8 m s–2.


An electron is projected with uniform velocity along the axis of a current carrying long solenoid. Which of the following is true?


When a magnetic compass needle is carried nearby to a straight wire carrying current, then

  1. the straight wire cause a noticeable deflection in the compass needle.
  2. the alignment of the needle is tangential to an imaginary circle with straight wire as its centre and has a plane perpendicular to the wire.

A charged particle is moving on circular path with velocity v in a uniform magnetic field B, if the velocity of the charged particle is doubled and strength of magnetic field is halved, then radius becomes ______.


A current of 3 A is flowing in a linear conductor having a length of 40 cm. The conductor is placed in a magnetic field of strength of 500 gauss and makes an angle of 30° with the direction of the field. It experiences a force of magnitude:


A straight conductor of length 2m moves at a speed of 20 m/s. When the conductor makes an angle of 30° with the direction of magnetic field of induction of 0.1 wbm2 then induced emf:


A conducting ring of radius 1m kept in a uniform magnetic field B of 0.01 T, rotates uniformly with an angular velocity 100 rad s−1 with its axis of rotation perpendicular to B. The maximum induced emf in it is:


A conducting loop of resistance R and radius r has its centre at the origin of the coordinate system in a magnetic field of induction B. When it is rotated about y-axis through 90°, the net charge flown in the loop is directly proportional to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×