English
Karnataka Board PUCPUC Science Class 11

The Wire Abc Shown in Figure Forms an Equilateral Triangle. Find the Magnetic Field B at the Centre O of the Triangle Assuming the Wire to Be Uniform. - Physics

Advertisements
Advertisements

Question

The wire ABC shown in figure forms an equilateral triangle. Find the magnetic field B at the centre O of the triangle assuming the wire to be uniform. 

Short Note

Solution

Let current 2I enter the circuit.
Since the wire is uniform, the current will be equally divided at point A (as shown in the figure).   

Now,
Magnetic field at P due to wire AB = B (say)
(Perpendicular to the plane in outward direction)

Magnetic field at P due to wire BD = B' (say)
(Perpendicular to the plane in outward direction)

Magnetic field at P due to wire AC = Magnetic field at P due to wire AB = B
(Perpendicular to the plane in inward direction)

Magnetic field at P due to wire CD = Magnetic field at P due to wire BD = B'
(Perpendicular to the plane in inward direction)

∴ Net magnetic field at P = B + B' − B − B' = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Magnetic Field due to a Current - Exercises [Page 251]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 13 Magnetic Field due to a Current
Exercises | Q 20 | Page 251

RELATED QUESTIONS

Sketch the change in flux, emf and force when a conducting rod PQ of resistance R and length l moves freely to and fro between A and C with speed v on a rectangular conductor placed in uniform magnetic field as shown in the figure


A short bar magnet of magnetic moment 0.9 J/T is placed with its axis at 30° to a uniform magnetic field. It experiences a torque of 0.063 J.

(i) Calculate the magnitude of the magnetic field.

(ii) In which orientation will the bar magnet be in stable equilibrium in the magnetic field?


Can a charged particle be accelerated by a magnetic field? Can its speed be increased?


Which of the following particles will have minimum frequency of revolution when projected with the same velocity perpendicular to a magnetic field?


You are facing a circular wire carrying an electric current. The current is clockwise as seen by you. Is the field at the centre coming towards you or going away from you?


A vertical wire carries a current in upward direction. An electron beam sent horizontally towards the wire will be deflected


A wire of length l carries a current i long the x-axis. A magnetic field exists, which is given as `vecB = B_0 (veci + vecj + veck)`  T. Find the magnitude of the magnetic force acting on the wire.


A current of 5.0 A exists in the circuit shown in the figure. The wire PQ has a length of 50 cm and the magnetic field in which it is immersed has a magnitude of 0.20 T. Find the magnetic force acting on the wire PQ.


A rigid wire consists of a semi-circular portion of radius R and two straight sections (figure). The wire is partially immersed in a perpendicular magnetic field B, as shown in the figure. Find the magnetic force on the wire if it carries a current i.


Consider a non-conducting plate of radius r and mass m that has a charge q distributed uniformly over it. The plate is rotated about its axis with an angular speed ω. Show that the magnetic moment µ and the angular momentum l of the plate are related as `mu = q/(2 m)l`


Consider a solid sphere of radius r and mass m that has a charge q distributed uniformly over its volume. The sphere is rotated about its diameter with an angular speed ω. Show that the magnetic moment µ and the angular momentum l of the sphere are related as `mu = q/(2m) l`


A long, straight wire is fixed horizontally and carries a current of 50.0 A. A second wire having linear mass density 1.0 × 10−4 kg m−1 is placed parallel to and directly above this wire at a separation of 5.0 mm. What current should this second wire carry such that the magnetic repulsion can balance its weight? 


Consider the situation shown in the figure. Suppose the circular loop lies in a vertical plane. The rod has a mass m. The rod and the loop have negligible resistances but the wire connecting O and C has a resistance R. The rod is made to rotate with a uniform angular velocity ω in the clockwise direction by applying a force at the midpoint of OA in a direction perpendicular to it. Find the magnitude of this force when the rod makes an angle θ with the vertical.


A straight horizontal conducting rod of length 0.45 m and mass 60 g is suspended by two vertical wires at its ends. A current of 5.0 A is set up in the rod through the wires.

(a) What magnetic field should be set up normal to the conductor in order that the tension in the wires is zero?

(b) What will be the total tension in the wires if the direction of current is reversed keeping the magnetic field same as before?
(Ignore the mass of the wires) g = 9.8 m s–2.


Correct expression for force on a current carrying conductor of length dl in a magnetic field is ______.


An electron is projected with uniform velocity along the axis of a current carrying long solenoid. Which of the following is true?


A conducting ring of radius 1m kept in a uniform magnetic field B of 0.01 T, rotates uniformly with an angular velocity 100 rad s−1 with its axis of rotation perpendicular to B. The maximum induced emf in it is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×