Advertisements
Advertisements
Question
Sketch the change in flux, emf and force when a conducting rod PQ of resistance R and length l moves freely to and fro between A and C with speed v on a rectangular conductor placed in uniform magnetic field as shown in the figure
Solution
The flux enclosed by the rod is
Φ = Blx for 0 ≤ x ≤ b
= Blx for b ≤ x ≤ 2b
Now, the magnitude of induced emf is
`epsilon=(dphi)/dt=-Bl(dx)/dt= -Blv` for 0 ≤ x ≤ b
`=-Bl(db)/dt=0` for b ≤ x ≤ 2b
Now, the magnitude of induced current when induced emf is non-zero is ε = IR
`:.I=epsilon/r=(Blv)/r`
The force required to keep the conductor in motion is F = BIl
`:.F=B(Blv)/Rl=(B^2l^2v)/R`
`:.F=(B^2l^2v)/R` for b ≤ x < b
= 0 for b ≤ x ≤ 2b
Therefore, the variation of flux, emf and force is
APPEARS IN
RELATED QUESTIONS
A short bar magnet of magnetic moment 0.9 J/T is placed with its axis at 30° to a uniform magnetic field. It experiences a torque of 0.063 J.
(i) Calculate the magnitude of the magnetic field.
(ii) In which orientation will the bar magnet be in stable equilibrium in the magnetic field?
Which of the following particles will have minimum frequency of revolution when projected with the same velocity perpendicular to a magnetic field?
A wire of length l carries a current i long the x-axis. A magnetic field exists, which is given as `vecB = B_0 (veci + vecj + veck)` T. Find the magnitude of the magnetic force acting on the wire.
Consider a straight piece of length x of a wire carrying a current i. Let P be a point on the perpendicular bisector of the piece, situated at a distance d from its middle point. Show that for d >> x, the magnetic field at P varies as 1/d2 whereas for d << x, it varies as 1/d.
The wire ABC shown in figure forms an equilateral triangle. Find the magnetic field B at the centre O of the triangle assuming the wire to be uniform.
In the circuit shown in the figure, find the value of the current shown in the ammeter A.
Two infinitely long current carrying conductors X and Y are kept parallel to each other, 24 cm apart in a vacuum. They carry currents of 5A and 7A respectively, in the same direction, as shown in the figure below. Find the position of a neutral point, i.e., a point where resultant magnetic flux density is zero. (Ignore earth’s magnetic field).
A charged particle is moving on circular path with velocity v in a uniform magnetic field B, if the velocity of the charged particle is doubled and strength of magnetic field is halved, then radius becomes ______.
A conducting ring of radius 1m kept in a uniform magnetic field B of 0.01 T, rotates uniformly with an angular velocity 100 rad s−1 with its axis of rotation perpendicular to B. The maximum induced emf in it is:
A conducting loop of resistance R and radius r has its centre at the origin of the coordinate system in a magnetic field of induction B. When it is rotated about y-axis through 90°, the net charge flown in the loop is directly proportional to: