English
Karnataka Board PUCPUC Science Class 11

A Sources of Sound Operates at 2.0 Khz, 20 W Emitting Sound Uniformly in All Directions. the Speed of Sound in Air is 340 M S−1 and the Density of Air is 1.2 Kg M −3. - Physics

Advertisements
Advertisements

Question

A sources of sound operates at 2.0 kHz, 20 W emitting sound uniformly in all directions. The speed of sound in air is 340 m s−1 and the density of air is 1.2 kg m −3. (a) What is the intensity at a distance of 6.0 m from the source? (b) What will be the pressure amplitude at this point? (c) What will be the displacement amplitude at this point?

Sum

Solution

Given:
Velocity of sound in air v = 340 ms−1
Power of the source = 20 W
Frequency of the source f = 2,000 Hz
Density of air ρ = 1.2 kgm −3

(a) Distance of the source r = 6.0 m
Intensity is given by:

\[I = \frac{P}{A}\]

where is the area.

\[\Rightarrow I = \frac{20}{4\pi r^2} = \frac{20}{4 \times \pi \times 6^2}      \left( \because r = 6  m \right)\] 

\[ \Rightarrow I = 44  \text { mw/ m }^2\]

(b) As we know,

\[I = \frac{p_0^2}{2\rho v} . \] 

\[ \Rightarrow    P_0  = \sqrt{I \times 2\rho v}\] 

\[ \Rightarrow  P_0  = \sqrt{2 \times 1 . 2 \times 340 \times 44 \times {10}^{- 3}}\] 

\[ \Rightarrow  P_0  = 6 . 0  \text { Pa } \text { or } \text { N/ m }^2\]

(c) As we know, I = 2π2S02v2ρV.
S0 is the displacement amplitude.

\[\Rightarrow    S_0  = \sqrt{\frac{I}{2 \pi^2 v^2 \rho V}}\]

On applying the respective values, we get:
S0 = 1.2 × 10−6 m

shaalaa.com
Wave Motion
  Is there an error in this question or solution?
Chapter 16: Sound Waves - Exercise [Page 353]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 16 Sound Waves
Exercise | Q 17 | Page 353

RELATED QUESTIONS

A wave is represented by an equation \[y =  c_1   \sin  \left( c_2 x + c_3 t \right)\] In which direction is the wave going? Assume that \[c_1 , c_2\] \[c_3\] are all positive. 


What is the smallest positive phase constant which is equivalent to 7⋅5 π?


Two tuning forks vibrate with the same amplitude but the frequency of the first is double the frequency of the second. Which fork produces more intense sound in air?


A tuning fork of frequency 512 Hz is vibrated with a sonometer wire and 6 beats per second are heard. The beat frequency reduces if the tension in the string is slightly increased. The original frequency of vibration of the string is


An electrically maintained tuning fork vibrates with constant frequency and constant amplitude. If the temperature of the surrounding air increases but pressure remains constant, the produced will have

(a) larger wavelength
(b) larger frequency
(c) larger velocity
(d) larger time period.


A man stands before a large wall at a distance of 50.0 m and claps his hands at regular intervals. Initially, the interval is large. He gradually reduces the interval and fixes it at a value when the echo of a clap merges every 3 seconds, find the velocity of sound in air.


The equation of a travelling sound wave is y = 6.0 sin (600 t − 1.8 x) where y is measured in 10−5 m, t in second and x in metre. (a) Find the ratio of the displacement amplitude of the particles to the wavelength of the wave. (b) Find the ratio of the velocity amplitude of the particles to the wave speed.


The absolute temperature of air in a region linearly increases from T1 to T2 in a space of width d. Find the time taken by a sound wave to go through the region in terms of T1T2d and the speed v of sound at 273 K. Evaluate this time for T1 = 280 K, T2 = 310 K, d = 33 m and v = 330 m s−1.


Sound with intensity larger than 120 dB appears pain full to a person. A small speaker delivers 2.0 W of audio output. How close can the person get to the speaker without hurting his ears?


A string, fixed at both ends, vibrates in a resonant mode with a separation of 2⋅0 cm between the consecutive nodes. For the next higher resonant frequency, this separation is reduced to 1⋅6 cm. Find the length of the string.


If the sound level in a room is increased from 50 dB to 60 dB, by what factor is the pressure amplitude increased?


A source of sound S and detector D are placed at some distance from one another. a big cardboard is placed near hte detector and perpendicular to the line SD as shown in figure. It is gradually moved away and it is found that the intensity changes from a maximum to a minimum as the board is moved through a distance of 20 cm. Find the frequency of the sound emitted. Velocity of sound in air is 336 m s−1.


A string of length L fixed at both ends vibrates in its fundamental mode at a frequency ν and a maximum amplitude A. (a)

  1. Find the wavelength and the wave number k. 
  2. Take the origin at one end of the string and the X-axis along the string. Take the Y-axis along the direction of the displacement. Take t = 0 at the instant when the middle point of the string passes through its mean position and is going towards the positive y-direction. Write the equation describing the standing wave.

The first overtone frequency of a closed organ pipe P1 is equal to the fundamental frequency of a open organ pipe P2. If the length of the pipe P1 is 30 cm, what will be the length of P2?


A source of sound with adjustable frequency produces 2 beats per second with a tuning fork when its frequency is either 476 Hz of 480 Hz. What is the frequency of the tuning fork?


A cylindrical tube, open at both ends, has a fundamental frequency v. The tube is dipped vertically in water so that half of its length is inside the water. The new fundamental frequency is


A traffic policeman standing on a road sounds a whistle emitting the main frequency of 2.00 kHz. What could be the apparent frequency heard by a scooter-driver approaching the policeman at a speed of 36.0 km h−1? Speed of sound in air = 340 m s−1.


A person standing on a road sends a sound signal to the driver of a car going away from him at a speed of 72 km h−1. The signal travelling at 330 m s−1 in air and having a frequency of 1600 Hz gets reflected from the body of the car and returns. Find the frequency of the reflected signal as heard by the person.


For the propagation of longitudinal waves, the medium must have

  1. elasticity
  2. mass
  3. inertia
  4. force of cohesion

With propagation of longitudinal waves through a medium, the quantity transmitted is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×