Advertisements
Advertisements
Question
A table of values of f, g, f' and g' is given:
x | f(x) | g(x) | f'(x) | g'(x) |
2 | 1 | 6 | –3 | 4 |
4 | 3 | 4 | 5 | –6 |
6 | 5 | 2 | –4 | 7 |
If s(x) = f[9 − f (x)] find s'(4).
Solution
s(x) = f[9 − f(x)]
∴ s'(x) = `d/dx`{f[9 − f(x)]}
= f'[9 − f(x)].`d/dx`[9 − f(x)]
= f'[9 − f(x)].[0 − f'(x)]
= − f'[9 − f(x)].f'(x)
∴ s'(4) = − f'[9 − f(4)].f'(4)
= − f'[9 − 3].f'(4) ...[∵ f(x) = 3, when x = 4]
= − f'(6).f'(4)
= − (− 4)(5) ...[From the table]
= 20.
APPEARS IN
RELATED QUESTIONS
A table of values of f, g, f' and g' is given :
x | f(x) | g(x) | f'(x) | g'(x) |
2 | 1 | 6 | –3 | 4 |
4 | 3 | 4 | 5 | -6 |
6 | 5 | 2 | –4 | 7 |
If r(x) =f [g(x)] find r' (2).
A table of values of f, g, f' and g' is given :
x | f(x) | g(x) | f'(x) | g'(x) |
2 | 1 | 6 | –3 | 4 |
4 | 3 | 4 | 5 | -6 |
6 | 5 | 2 | –4 | 7 |
If R(x) =g[3 + f(x)] find R'(4).
A table of values of f, g, f' and g' is given :
x | f(x) | g(x) | f'(x) | g'(x) |
2 | 1 | 6 | –3 | 4 |
4 | 3 | 4 | 5 | -6 |
6 | 5 | 2 | –4 | 7 |
If S(x) =g [g(x)] find S'(6).
Assume that `f'(3) = -1,"g"'(2) = 5, "g"(2) = 3 and y = f["g"(x)], "then" ["dy"/"dx"]_(x = 2) = ?`
If h(x) = `sqrt(4f(x) + 3"g"(x)), f(1) = 4, "g"(1) = 3, f'(1) = 3, "g"'(1) = 4, "find h"'(1)`.
Find the x co-ordinates of all the points on the curve y = sin 2x − 2 sin x, 0 ≤ x < 2π, where `"dy"/"dx"` = 0.
Select the appropriate hint from the hint basket and fill up the blank spaces in the following paragraph. [Activity]:
"Let f(x) = x2 + 5 and g (x) = ex + 3 then
f[g(x)] = .......... and g[f(x)] =...........
Now f'(x) = .......... and g'(x) = ..........
The derivative of f[g(x)] w. r. t. x in terms of f and g is ..........
Therefore `"d"/"dx"[f["g"(x)]]` = .......... and
`["d"/"dx"[f["g"(x)]]]_(x = 0)` = ..........
The derivative of g[f(x)] w. r. t. x in terms of f and g is
Therefore `"d"/"dx"["g"[f(x)]]` = .......... and
`["d"/"dx"["g"[f(x)]]]_(x = -1)` = .........."
Hint basket : `{f'["g"(x)]·"g"'(x), 2e^(2x) + 6e^x, 8, "g"' [ f (x)]· f'(x),2xe^(x^2+5), − 2e^6,e^(2x) + 6e^x + 14, e^(x^2+5) + 3, 2x, e^x}`
If sin y = x sin(a + y), then `dy/dx` = ______
If cos y = x cos(a + y) with cos a ≠ ± 1, then `dy/dx` is equal to ______
If f(x) = `(sin^2x)/(1 + cotx) + (cos^2x)/(1 + tan x)`, then `"f'"(pi/4)` is ______.
The equation of tangent to the curve `(x/"a")^"n" + (y/"b")^"n"` = 2 at the point (a, b) is ______.
If x = a cos3θ, y = a sin3θ, then `1 + (("d"y)/("d"x))^2` is ______.