Advertisements
Advertisements
Question
Select the appropriate hint from the hint basket and fill up the blank spaces in the following paragraph. [Activity]:
"Let f(x) = x2 + 5 and g (x) = ex + 3 then
f[g(x)] = .......... and g[f(x)] =...........
Now f'(x) = .......... and g'(x) = ..........
The derivative of f[g(x)] w. r. t. x in terms of f and g is ..........
Therefore `"d"/"dx"[f["g"(x)]]` = .......... and
`["d"/"dx"[f["g"(x)]]]_(x = 0)` = ..........
The derivative of g[f(x)] w. r. t. x in terms of f and g is
Therefore `"d"/"dx"["g"[f(x)]]` = .......... and
`["d"/"dx"["g"[f(x)]]]_(x = -1)` = .........."
Hint basket : `{f'["g"(x)]·"g"'(x), 2e^(2x) + 6e^x, 8, "g"' [ f (x)]· f'(x),2xe^(x^2+5), − 2e^6,e^(2x) + 6e^x + 14, e^(x^2+5) + 3, 2x, e^x}`
Solution
"Let f(x) = x2 + 5 and g(x) = ex + 3 then
f[g(x)] = (ex + 3)2 + 5
f[g(x)] = (ex)2 + 6ex + 9 + 5
f[g(x)] = e2x + 6ex + 14
g[f(x)] = `bb(e^("x"^2 + 5) + 3)`
Now f'(x) = 2x and g'(x) = ex
The derivative of f[g(x)] w. r. t. x in terms of f and g is f'[g(x)].g'(x).
Therefore `"d"/"dx"["f"["g"("x")]]` = `"d"/"dx"["e"^(2"x") + 6"e"^"x" + 14]`
= `"d"/"dx""e"^(2"x") + 6"d"/"dx""e"^"x" + "d"/"dx"14`
= `"e"^(2"x") "d"/"dx"(2"x") + 6"e"^"x" + 0`
`"d"/"dx""f"["g"("x")]` = `bb(2"e"^(2"x") + 6"e"^"x")`
and `"d"/"dx"["f"["g"(x)]]_("x" = 0) = 2"e"^(2(0)) + 6"e"^(0)`
= `2"e"^0 + 6"e"^(0)`
= 2 × 1 + 6 × 1
`"d"/"dx"["f"["g"(x)]]_(x = 0)` = 8
The derivative of g[f(x)] w. r. t. x in terms of f and g is g'[f(x)].f'(x).
Therefore `"d"/"dx"["g"["f"("x")]] = "d"/"dx"("e"^("x"^2 + 5) + 3)`
= `"d"/"dx" "e"^("x"^2 + 5) + "d"/"dx"(3)`
`"d"/"dx"["g"["f"("x")]] = "e"^("x"^2 + 5) "d"/"dx" "x"^2 + 5 + 0 = "e"^("x"^2 + 5) 2"x" = bb(2"xe"^("x"^2 + 5))`
`"d"/"dx"["g"["f"("x")]]_("x" = -1) = 2"xe"^("x"^2 + 5)`
= `2(-1)"e"^((-1)^2 + 5)`
= `-2"e"^(1 + 5)`
= −2e6
APPEARS IN
RELATED QUESTIONS
A table of values of f, g, f' and g' is given :
x | f(x) | g(x) | f'(x) | g'(x) |
2 | 1 | 6 | –3 | 4 |
4 | 3 | 4 | 5 | -6 |
6 | 5 | 2 | –4 | 7 |
If r(x) =f [g(x)] find r' (2).
A table of values of f, g, f' and g' is given :
x | f(x) | g(x) | f'(x) | g'(x) |
2 | 1 | 6 | –3 | 4 |
4 | 3 | 4 | 5 | -6 |
6 | 5 | 2 | –4 | 7 |
If R(x) =g[3 + f(x)] find R'(4).
A table of values of f, g, f' and g' is given:
x | f(x) | g(x) | f'(x) | g'(x) |
2 | 1 | 6 | –3 | 4 |
4 | 3 | 4 | 5 | –6 |
6 | 5 | 2 | –4 | 7 |
If s(x) = f[9 − f (x)] find s'(4).
A table of values of f, g, f' and g' is given :
x | f(x) | g(x) | f'(x) | g'(x) |
2 | 1 | 6 | –3 | 4 |
4 | 3 | 4 | 5 | -6 |
6 | 5 | 2 | –4 | 7 |
If S(x) =g [g(x)] find S'(6).
Assume that `f'(3) = -1,"g"'(2) = 5, "g"(2) = 3 and y = f["g"(x)], "then" ["dy"/"dx"]_(x = 2) = ?`
If h(x) = `sqrt(4f(x) + 3"g"(x)), f(1) = 4, "g"(1) = 3, f'(1) = 3, "g"'(1) = 4, "find h"'(1)`.
Find the x co-ordinates of all the points on the curve y = sin 2x − 2 sin x, 0 ≤ x < 2π, where `"dy"/"dx"` = 0.
If sin y = x sin(a + y), then `dy/dx` = ______
If cos y = x cos(a + y) with cos a ≠ ± 1, then `dy/dx` is equal to ______
If f(x) = `(sin^2x)/(1 + cotx) + (cos^2x)/(1 + tan x)`, then `"f'"(pi/4)` is ______.
The equation of tangent to the curve `(x/"a")^"n" + (y/"b")^"n"` = 2 at the point (a, b) is ______.
If x = a cos3θ, y = a sin3θ, then `1 + (("d"y)/("d"x))^2` is ______.