English

∆ABC, D भुजा AB का मध्य-बिंदु है तथा P भुजा BC पर स्थित कोई बिंदु है। यदि रेखाखंड CQ || PD भुजा AB से Q पर मिलता है (आकृति), तो सिद्ध कीजिए कि ar (BPQ) = 12 ar (∆ABC) है। - Mathematics (गणित)

Advertisements
Advertisements

Question

∆ABC, D भुजा AB का मध्य-बिंदु है तथा P भुजा BC पर स्थित कोई बिंदु है। यदि रेखाखंड CQ || PD भुजा AB से Q पर मिलता है (आकृति), तो सिद्ध कीजिए कि ar (BPQ) = `1/2` ar (∆ABC) है।

Sum

Solution


दिया गया है - ∆ABC में, D, AB का मध्य-बिंदु है और P, BC पर कोई बिंदु है।

CQ || PD का अर्थ Q में AB है।

सिद्ध करना है -  ar (∆BPQ) = `1/2` ar (∆ABC) 

रचना - PQ और CD को मिलाइए। 

उपपत्ति - चूँकि, D, AB का मध्य-बिंदु है। तो, CD, ∆ABC की माध्यिका है।

हम जानते हैं कि, त्रिभुज की एक माध्यिका उसे बराबर क्षेत्रफल वाले दो त्रिभुजों में विभाजित करती है।

∴ ar (∆BCD) = `1/2` ar (∆ABC)

⇒ ar (∆BPD) + ar (∆DPC) = `1/2` ar (∆ABC)  ...(i)

अब, ∆DPQ और ∆DPC एक ही आधार DP पर और समान समांतर रेखाओं DP और CQ के बीच स्थित हैं।

इसलिए, ar (∆DPQ) = ar (∆DPC)  ...(ii) 

समीकरण (ii) से मान को समीकरण (i) में रखने पर, हम पाते हैं।

ar (∆BPD) + ar (∆DPQ) = `1/2` ar (∆ABC)

⇒ ar (∆BPQ) = `1/2` ar (∆ABC)

अतः सिद्ध हुआ।

shaalaa.com
एक ही आधार पर और एक ही समांतर रेखाओं के बीच आकृतियाँ
  Is there an error in this question or solution?
Chapter 9: समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.3 [Page 92]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 9 समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.3 | Q 4. | Page 92

RELATED QUESTIONS

यदि E, F, G और H क्रमशः एक समांतर चतुर्भुज ABCD की भुजाओं के मध्य-बिंदु हैं, तो दर्शाइए कि ar (EFGH) = `1/2`ar (ABCD) हैं


XY त्रिभुज ABC की भुजा BC के समांतर एक रेखा है | यदि BE || AC और CF || AB रेखा XY से क्रमश: E और F पर मिलती है, तो दर्शाइए कि:

ar(ABE) = ar(ACF)


ABCD एक समलंब है, जिसमें AB || DC है और AC के समांतर एक रेखा AB को X पर और BC को Y पर प्रतिच्छेद करती है | सिद्ध कीजिए कि ar (ADX) = ar (ACY) है |

[संकेत : CX को मिलाइए]


निम्नलिखित आकृति में, समांतर चतुर्भुज ABCD का क्षेत्रफल है :


PQRS एक आयत है, जो त्रिज्या 13 cm वाले एक वृत्त के चतुर्थांश के अंतर्गत है। A भुजा PQ पर स्थित कोई बिंदु है। यदि PS = 5 cm है, तो ar (PAS) = 30 cm2 है।  


ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D भुजा BC का मध्य-बिंदु है। तब, ar (BDE) = `1/4` ar (ABC) है।


निम्नलिखित आकृति में, ABCD और EFGD समांतर चतुर्भुज हैं तथा G भुजा CD का मध्य-बिंदु है। तब, ar (DPC) = `1/2` ar (EFGD) है। 


X और Y त्रिभुज LMN की भुजा LN पर स्थित दो बिंदु इस प्रकार हैं कि LX = XY = YN हैं। X से होकर जाती हुई एक रेखा LM के समांतर खींची गई जो MN को Z पर मिलती है। (देखिए आकृति)। सिद्ध कीजिए कि ar (LZY) = ar (MZYX) है।


समांतर चतुर्भुज ABCD का क्षेत्रफल 90 cm2 है (आकृति)। ज्ञात कीजिए :

  1. ar (ABEF) 
  2. ar (ABD) 
  3. ar (BEF) 


एक समलंब ABCD में, AB || DC है तथा L भुजा BC का मध्य-बिंदु है। L से होकर, एक रेखा PQ || AD खींची गई है, जो AB को P पर और बढ़ाई गई DC को Q पर मिलती है (आकृति), सिद्ध कीजिए ar (ABCD) = ar (APQD)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×