English

ΔABC में, किरण BD यह ∠ABC का कोण समद्विभाजक है। A - D - C, रेख DE || भुजा BC, A - E - B हो, तो सिद्ध कीजिए ABBCAEEBABBC=AEEB उपपत्ति: ΔABC में, किरण BD यह ∠B को समद्विभाजित करता है। - Mathematics 2 - Geometry [गणित २ - ज्यामिति]

Advertisements
Advertisements

Question

ΔABC में, किरण BD यह ∠ABC का कोण समद्विभाजक है। A - D - C, रेख DE || भुजा BC, A - E - B हो, तो सिद्ध कीजिए `("AB")/("BC") = ("AE")/("EB")`

उपपत्ति:

ΔABC में, किरण BD यह ∠B को समद्विभाजित करता है।

∴ `square/("BC") = ("AD")/("DC")`  ......(I) (`square`)

ΔABC में, DE || BC

∴ `(square)/("EB") = ("AD")/("DC")`   ....(II) (`square`)

∴ `("AB")/square = square/("EB")`   [(I) व (II) से]

Fill in the Blanks
Sum

Solution

उपपत्ति:

ΔABC में, किरण BD यह ∠B को समद्विभाजित करता है।

∴ `(bb"AB")/("BC") = ("AD")/("DC")`  ......(I) (कोण समद्‌विभाजक प्रमेय)

ΔABC में, DE || BC

∴ `(bb"AE")/("EB") = ("AD")/("DC")`   ....(II) (समानुपात का मूलभूत प्रमेय)

∴ `("AB")/bb"BC" = bb"AE"/("EB")`   [(I) व (II) से]

shaalaa.com
त्रिभुज के कोण समद्‌विभाजक का प्रमेय
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

ΔMNP में रेख NQ यह ∠N की समद्‌विभाजक है। यदि MN = 5, PN = 7, MQ = 2.5 तो QP का मान ज्ञात कीजिए।

 


आकृति में दी गई जानकारी के आधार पर QP का मान ज्ञात कीजिए।


ΔABC में रेख BD यह ∠ABC की समद्‌विभाजक है, यदि AB = x, BC = x + 5, AD = x – 2, DC = x + 2 तो x का मान ज्ञात कीजिए।


ΔABC में AB = AC, ∠B तथा ∠C के समद्‌विभाजक भुजा AC तथा भुजा AB को क्रमश: बिंदु D तथा E पर प्रतिच्छेदित करते हैं। तो सिद्ध कीजिए कि रेख ED || रेख BC


ΔPQR में रेख PM माध्यिका है। ∠PMQ तथा ∠PMR के समद्‌विभाजक भुजा PQ तथा भुजा PR को क्रमश: बिंदु X और बिंदु Y पर प्रतिच्छेदित करते हैं, तो सिद्ध कीजिए कि, XY || QR.

दिए गए रिक्त स्थानों को भरकर उपपत्ति पूर्ण कीजिए।

ΔPMQ में किरण MX यह ∠PMQ की समद्‌विभाजक है।

∴ `square/square = square/square` ........(I) (कोण समद्‌विभाजक प्रमेय)

ΔPMR में किरण MY यह ∠PMR की समद्‌विभाजक है।

∴ `square/square = square/square` ........(II) (कोण समद्‌विभाजक प्रमेय)

परंतु `"MP"/"MQ" = "MP"/"MR"` ................ (बिंदु M यह QR का मध्य बिंदु है अर्थात MQ = MR)

∴ `"PX"/"XQ" = "PY"/"YR"`

∴ XY || QR ............(समानुपात के मूलभूत प्रमेय का विलोम)

 


आकृति ΔABC में ∠B तथा ∠C के समद्‌विभाजक परस्पर एक दूसरे को बिंदु X पर प्रतिच्छेदित करते हैं। रेखा AX यह भुजा BC को बिंदु Y पर प्रतिच्छेदित करती है; यदि AB = 5, AC = 4, BC = 6 तो `"AX"/"XY"` का मान ज्ञात कीजिए।


निचे दी गई आकृति के आधार पर बिंदु A, ∠XYZ केसमद्‌विभाजक पर है। यदि AX = 2 सेमी तो AZ की लंबाई ज्ञात कीजिए ।


निचे दी गई आकृति के आधार पर ∠RST = 56°, रेख PT ⊥ किरण ST, रेख PR ⊥ किरण SR तथा रेख PR ≅ रेख PT हो तो ∠RSP का माप ज्ञात कीजिए। कारणसहित लिखिए।


ΔABC में ∠BAC की समद्‌विभाजक भुजा BC पर लंब हो तो सिद्ध कीजिए कि D ABC समद्‌विबाहु त्रिभुज है।


निचे दी गई आकृति के आधार पर ΔPQR में यदि PQ > PR तथा ∠Q तथा ∠R के समद्‌विभाजक बिंदु S पर प्रतिच्छेदित करते हैं तो सिद्ध कीजिए कि SQ > SR


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×