English

An object approaches a convergent lens from the left of the lens with a uniform speed 5 m/s and stops at the focus. The image ______. - Physics

Advertisements
Advertisements

Question

An object approaches a convergent lens from the left of the lens with a uniform speed 5 m/s and stops at the focus. The image ______.

Options

  • moves away from the lens with an uniform speed 5 m/s.

  • moves away from the lens with an uniform accleration.

  • moves away from the lens with a non-uniform acceleration.

  • moves towards the lens with a non-uniform acceleration.

MCQ
Fill in the Blanks

Solution

An object approaches a convergent lens from the left of the lens with a uniform speed 5 m/s and stops at the focus. The image moves away from the lens with a non-uniform acceleration.

Explanation:

In our problem the object approaches a convergent lens from the left of the lens with a uniform speed of 5 m/s, hence the image will move away from the lens with a non-uniform acceleration, the image moves slower in the beginning and faster later on will move from F to 2F and when the object moves from 2F to F, the image will move from 2F to infinity. At 2F, the speed of the object and image will be equal.

shaalaa.com
Refraction at Spherical Surfaces and Lenses - Refraction by a Lens
  Is there an error in this question or solution?
Chapter 9: Ray Optics And Optical Instruments - MCQ I [Page 55]

APPEARS IN

NCERT Exemplar Physics [English] Class 12
Chapter 9 Ray Optics And Optical Instruments
MCQ I | Q 9.03 | Page 55

RELATED QUESTIONS

The image of a small electric bulb fixed on the wall of a room is to be obtained on the opposite wall 3 m away by means of a large convex lens. What is the maximum possible focal length of the lens required for the purpose?


A screen is placed 90 cm from an object. The image of the object on the screen is formed by a convex lens at two different locations separated by 20 cm. Determine the focal length of the lens.


  1. Determine the ‘effective focal length’ of the combination of the two lenses, if they are placed 8.0 cm apart with their principal axes coincident. Does the answer depend on which side of the combination a beam of parallel light is incident? Is the notion of the effective focal length of this system useful at all?
  2. An object 1.5 cm in size is placed on the side of the convex lens in the arrangement (a) above. The distance between the object and the convex lens is 40 cm. Determine the magnification produced by the two-lens system and the size of the image.

An object 1.5 cm in size is placed on the side of the convex lens in the arrangement (a) above. The distance between the object and the convex lens is 40 cm. Determine the magnification produced by the two-lens system, and the size of the image


A man with normal near point (25 cm) reads a book with small print using a magnifying glass: a thin convex lens of focal length 5 cm.

(a) What is the closest and the farthest distance at which he should keep the lens from the page so that he can read the book when viewing through the magnifying glass?

(b) What is the maximum and the minimum angular magnification (magnifying power) possible using the above simple microscope?


A card sheet divided into squares each of size 1 mm2 is being viewed at a distance of 9 cm through a magnifying glass (a converging lens of focal length 9 cm) held close to the eye.

  1. What is the magnification produced by the lens? How much is the area of each square in the virtual image?
  2. What is the angular magnification (magnifying power) of the lens?
  3. Is the magnification in (a) equal to the magnifying power in (b)? Explain.

Figure shows an equiconvex lens (of refractive index 1.50) in contact with a liquid layer on top of a plane mirror. A small needle with its tip on the principal axis is moved along the axis until its inverted image is found at the position of the needle. The distance of the needle from the lens is measured to be 45.0 cm. The liquid is removed and the experiment is repeated. The new distance is measured to be 30.0 cm. What is the refractive index of the liquid?


Two concave lenses L1 and L2 are kept in contact with each other. If the space between the two lenses is filled with a material of smaller refractive index, the magnitude of the focal length of the combination


Will the focal length of a lens for red light be more, same or less than that for blue light?


In many experimental set-ups the source and screen are fixed at a distance say D and the lens is movable. Show that there are two positions for the lens for which an image is formed on the screen. Find the distance between these points and the ratio of the image sizes for these two points.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×