English

Answer the following question in detail. Explain the formation of a secondary rainbow. For which angular range with the horizontal is it visible? - Physics

Advertisements
Advertisements

Question

Answer the following question in detail.

Explain the formation of a secondary rainbow. For which angular range with the horizontal is it visible?

Answer in Brief

Solution

  1. A ray AB incident from Sun (white light) strikes the lower portion of a water drop at an incident angle i.
  2. On entering into the water, it deviates and disperses into constituent colours. The figure shows the extreme colours (violet and red).

           Formation of secondary rainbow
  3. Refracted rays BV and BR finally emerge the drop from V' and R' after suffering two internal reflections and can be seen by an observer on the ground.
  4. Minimum deviation rays of red and violet colour are inclined to the ground level at θR ≈ 51° and θV ≈ 53° respectively. As a result, in the rainbow, the violet is above and red is below.
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Optics - Exercises [Page 186]

APPEARS IN

Balbharati Physics [English] 11 Standard Maharashtra State Board
Chapter 9 Optics
Exercises | Q 3. (iv) (iii) | Page 186

RELATED QUESTIONS

Name the phenomenon responsible for it.


Why does unpolarised light from a source show a variation in intensity when viewed through a polaroid which is rotated?


Show with the help of a diagram, how unpolarised light from Sun gets linearly polarised by scattering.


Draw the intensity distribution for the fringes produced in interference ?


The image formed by a concave mirror


A parallel beam of light is incident on a converging lens parallel to its principal axis. As one moves away from the lens on the other side on its principal axis, the intensity of light


A point object O is placed on the principal axis of a convex lens of focal length f = 20 cm at a distance of 40 cm to the left of it. The diameter of the lens is 10 cm. An eye is placed 60 cm to right of the lens and a distance h below the principal axis. The maximum value of h to see the image is


A 1 cm object is placed perpendicular to the principal axis of a convex mirror of focal length 7.5 cm. Find its distance from the mirror if the image formed is 0.6 cm in size.


A 3 cm tall object is placed at a distance of 7.5 cm from a convex mirror of focal length 6 cm. Find the location, size and nature of the image.


Locate the image of the point P as seen by the eye in the figure.


A container contains water up to a height of 20 cm and there is a point source at the centre of the bottom of the container. A rubber ring of radius r floats centrally on the water. The ceiling of the room is 2.0 m above the water surface. (a) Find the radius of the shadow of the ring formed on the ceiling if r = 15 cm. (b) Find the maximum value of r for which the shadow of the ring is formed on the ceiling. Refractive index of water = 4/3.


A biconvex thick lens is constructed with glass (μ = 1.50). Each of the surfaces has a radius of 10 cm and the thickness at the middle is 5 cm. Locate the image of an object placed far away from the lens.


The diameter of the sun is 1.4 × 109 m and its distance from the earth is 1.5 × 1011 m. Find the radius of the image of the sun formed by a lens of focal length 20 cm.


Fill in the blank and rewrite the completed statement:

Very fine particles mainly scatter ______ light.


Explain: ‘How is a rainbow formed’?


Answer the following question in detail.

State the conditions under which a rainbow can be seen.


Rainbow is the phenomenon due to ______.


A plano-convex lens is made of material having refractive index 1.5. The radius of curvature of curved surface is 40 cm. The focal length of the lens is ____________ cm.


Explain the formation of primary and secondary rainbow.


A parallel beam of light of wavelength 5890 Å falls normally on a slit of width 0.2 mm. Find the distance between the first minima on the two sides of the central maximum of the diffraction pattern observed on a screen placed in the focal plane of a convex lens of focal length 50 cm. The lens is placed quite close to the slit.


Case study: Mirage in deserts

To a distant observer, the light appears to be coming from somewhere below the ground. The observer naturally assumes that light is being reflected from the ground, say, by a pool of water near the tall object.

Such inverted images of distant tall objects cause an optical illusion to the observer. This phenomenon is called mirage. This type of mirage is especially common in hot deserts.

Based on the above facts, answer the following question :

In an optical fibre, if n1 and n2 are the refractive indices of the core and cladding, then which among the following, would be a correct equation? 


Case study: Mirage in deserts 

To a distant observer, the light appears to be coming from somewhere below the ground. The observer naturally assumes that light is being reflected from the ground, say, by a pool of water near the tall object.

Such inverted images of distant tall objects cause an optical illusion to the observer. This phenomenon is called mirage. This type of mirage is especially common in hot deserts.

Based on the above facts, answer the following question:

A diamond is immersed in such a liquid which has its refractive index with respect to air as greater than the refractive index of water with respect to air. Then the critical angle of diamond-liquid interface as compared to critical angle of diamond-water interface will


Case study: Mirage in deserts

To a distant observer, the light appears to be coming from somewhere below the ground. The observer naturally assumes that light is being reflected from the ground, say, by a pool of water near the tall object.

Such inverted images of distant tall objects cause an optical illusion to the observer. This phenomenon is called mirage. This type of mirage is especially common in hot deserts.

Based on the above facts, answer the following question:

The following figure shows a cross-section of a ‘light pipe’ made of a glass fiber of refractive index 1.68. The outer covering of the pipe is made of a material of refractive index 1.44. What is the range of the angles of the incident rays with the axis of the pipe for the following phenomena to occur.


A short pulse of white light is incident from air to a glass slab at normal incidence. After travelling through the slab, the first colour to emerge is ______.


Between the primary and secondary rainbows, there is a dark band known as Alexandar’s dark band. This is because ______.

  1. light scattered into this region interfere destructively.
  2. there is no light scattered into this region.
  3. light is absorbed in this region.
  4. angle made at the eye by the scattered rays with respect to the incident light of the sun lies between approximately 42° and 50°.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×