English
Karnataka Board PUCPUC Science Class 11

Assume that Each Atom in a Copper Wire Contributes One Free Electron. Estimate the Number of Free Electrons in a Copper Wire of Mass 6.4 G (Take the Atomic Weight of Copper to Be 64 G Mol−1). - Physics

Advertisements
Advertisements

Question

Assume that each atom in a copper wire contributes one free electron. Estimate the number of free electrons in a copper wire of mass 6.4 g (take the atomic weight of copper to be 64 g mol−1). 

Numerical

Solution

Atomic weight of copper = 64 grams
No. of moles in 64 g of copper = 1
∴ No. of moles in 6.4 g of copper =  0.1
No. of atoms in 1 mole of copper = 6 × 10−23 = Avogadro's Number
No. of atoms in 0.1 mole = (6 × 10−23 × 0.1) = 6 × 1022
1 atom contributes 1 free electron.
∴ 6 × 1022 atoms contribute 6 × 1022 free electrons. 

shaalaa.com
Electric Field - Electric Field Due to a System of Charges
  Is there an error in this question or solution?
Chapter 7: Electric Field and Potential - Exercises [Page 124]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 7 Electric Field and Potential
Exercises | Q 75 | Page 124

RELATED QUESTIONS

The figure shows tracks of three charged particles in a uniform electrostatic field. Give the signs of the three charges. Which particle has the highest charge to mass ratio?


A hollow cylindrical box of length 0.5 m and area of cross-section 25 cm2 is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by `vecE = 20 xhati`  where E is NC­−1 and x is in metres. Find

(i) Net flux through the cylinder.

(ii) Charge enclosed by the cylinder.


The charge on a proton is +1.6 × 10−19 C and that on an electron is −1.6 × 10−19 C. Does it mean that the electron has 3.2 × 10−19 C less charge than the proton? 


Can a gravitational field be added vectorially to an electric field to get a total field?


When the separation between two charges is increased, the electric potential energy of the charges


Consider the situation in the figure. The work done in taking a point charge from P to Ais WA, from P to B is WB and from P to C is WC


The electric field in a region is directed outward and is proportional to the distance rfrom the origin. Taking the electric potential at the origin to be zero, 


Consider a uniformly charged ring of radius R. Find the point on the axis where the electric field is maximum.

 

A particle of mass 1 g and charge 2.5 × 10−4 C is released from rest in an electric field of 1.2 × 10 4 N C−1.   How long will it take for the particle to travel a distance of 40 cm?


An electric field of 20 NC−1 exists along the x-axis in space. Calculate the potential difference VB − VA where the points A and B are
(a) A = (0, 0); B = (4 m, 2m)
(b) A = (4 m, 2 m); B = (6 m, 5 m)
(c) A = (0, 0); B = (6 m, 5 m)
Do you find any relation between the answers of parts (a), (b) and (c)?  


Consider the situation of the previous problem. A charge of −2.0 × 10−4 C is moved from point A to point B. Find the change in electrical potential energy UB − UA for the cases (a), (b) and (c). 


An electric field  \[\vec{E}  =  \vec{i}\]  Ax exists in space, where A = 10 V m−2. Take the potential at (10 m, 20 m) to be zero. Find the potential at the origin.


Find the magnitude of the electric field at the point P in the configuration shown in the figure for d >> a.


Which of the following methods can be used to charge a metal sphere positively without touching it? Select the most appropriate.


A charged particle is free to move in an electric field. It will travel ______.

The Electric field at a point is ______.

  1. always continuous.
  2. continuous if there is no charge at that point.
  3. discontinuous only if there is a negative charge at that point.
  4. discontinuous if there is a charge at that point.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×