English
Karnataka Board PUCPUC Science Class 11

Can You Add Three Unit Vectors to Get a Unit Vector? Does Your Answer Change If Two Unit Vectors Are Along the Coordinate Axes? - Physics

Advertisements
Advertisements

Question

Can you add three unit vectors to get a unit vector? Does your answer change if two unit vectors are along the coordinate axes?

Answer in Brief

Solution

Yes we can add three unit vectors to get a unit vector.
No, the answer does not change if two unit vectors are along the coordinate axes. Assume three unit vectors \[\hat{i,} - \hat { i} \text { and }\hat { j}\] along the positive x-axis, negative x-axis and positive y-axis, respectively. Consider the figure given below:

The magnitudes of the three unit vectors ( \[\hat {i,} - \hat { i }\text { and } \hat {j})\] are the same, but their directions are different.
So, the resultant of \[\hat { i} \text { and } - \hat {i}\] is a zero vector.
Now, \[\hat {j} + \vec{0} = \hat {j}\]    (Using the property of zero vector)
∴ The resultant of three unit vectors ( \[\hat{i,} - \hat {i} \text { and }\hat { j }\])  is a unit vector (\[\hat {j}\]).

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Physics and Mathematics - Short Answers [Page 27]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 2 Physics and Mathematics
Short Answers | Q 4 | Page 27

RELATED QUESTIONS

India has had a long and unbroken tradition of great scholarship — in mathematics, astronomy, linguistics, logic and ethics. Yet, in parallel with this, several superstitious and obscurantistic attitudes and practices flourished in our society and unfortunately continue even today — among many educated people too. How will you use your knowledge of science to develop strategies to counter these attitudes ?


What are the dimensions of volume of a sphere of radius a?


A physical quantity is measured and the result is expressed as nu where u is the unit used and n is the numerical value. If the result is expressed in various units then 


A dimensionless quantity


Choose the correct statements(s):
(a) All quantities may be represented dimensionally in terms of the base quantities.
(b) A base quantity cannot be represented dimensionally in terms of the rest of the base quantities.
(c) The dimensions of a base quantity in other base quantities is always zero.
(d) The dimension of a derived quantity is never zero in any base quantity.


Find the dimensions of pressure.


Find the dimensions of electric field E. 

The relevant equations are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]
where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of magnetic field B.
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.


Test if the following equation is dimensionally correct:
\[v = \frac{1}{2 \pi}\sqrt{\frac{mgl}{I}};\] 
where h = height, S = surface tension, \[\rho\] = density, P = pressure, V = volume, \[\eta =\] coefficient of viscosity, v = frequency and I = moment of interia.


Is a vector necessarily changed if it is rotated through an angle?


Let ε1 and ε2 be the angles made by  \[\vec{A}\] and -\[\vec{A}\] with the positive X-axis. Show that tan ε1 = tan ε2. Thus, giving tan ε does not uniquely determine the direction of \[\vec{A}\].

  

Is the vector sum of the unit vectors  \[\vec{i}\] and \[\vec{i}\] a unit vector? If no, can you multiply this sum by a scalar number to get a unit vector?

 


If \[\vec{A} \times \vec{B} = 0\] can you say that

(a) \[\vec{A} = \vec{B} ,\]

(b) \[\vec{A} \neq \vec{B}\] ?


The magnitude of the vector product of two vectors \[\left| \vec{A} \right|\] and \[\left| \vec{B} \right|\] may be

(a) greater than AB
(b) equal to AB
(c) less than AB
(d) equal to zero.


A vector \[\vec{A}\] makes an angle of 20° and \[\vec{B}\] makes an angle of 110° with the X-axis. The magnitudes of these vectors are 3 m and 4 m respectively. Find the resultant.


A carrom board (4 ft × 4 ft square) has the queen at the centre. The queen, hit by the striker moves to the from edge, rebounds and goes in the hole behind the striking line. Find the magnitude of displacement of the queen (a) from the centre to the front edge, (b) from the front edge to the hole and (c) from the centre to the hole.


Two vectors have magnitudes 2 m and 3m. The angle between them is 60°. Find (a) the scalar product of the two vectors, (b) the magnitude of their vector product.


Give an example for which \[\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{B} \text{ but } \vec{A} \neq \vec{C}\].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×