English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Consider a simple pendulum of length l = 0.9 m which is properly placed on a trolley rolling down on a inclined plane which is at θ = 45° with the horizontal. - Physics

Advertisements
Advertisements

Question

Consider a simple pendulum of length l = 0.9 m which is properly placed on a trolley rolling down on a inclined plane which is at θ = 45° with the horizontal. Assuming that the inclined plane is frictionless, calculate the time period of oscillation of the simple pendulum.

Numerical

Solution

Length of the pendulum l = 0.9 m

Inclined angle θ = 45°

Time period of a simple pendulum T = `2π sqrt("l"/"g’")`

g’ = g cos θ

T = `2π sqrt("l"/("g" cos θ))`

= `2 xx 3.14 xx sqrt(0.9/(9.8 xx cos 45°))`

= `6.28 xx sqrt(0.1298)`

T = 2.263 s

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Oscillations - Evaluation [Page 220]

APPEARS IN

Samacheer Kalvi Physics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 10 Oscillations
Evaluation | Q IV. 2. | Page 220

RELATED QUESTIONS

In a damped harmonic oscillator, periodic oscillations have _______ amplitude.

(A) gradually increasing

(B) suddenly increasing

(C) suddenly decreasing

(D) gradually decreasing


A particle executes S.H.M. with a period of 10 seconds. Find the time in which its potential energy will be half of its total energy.


Can simple harmonic motion take place in a non-inertial frame? If yes, should the ratio of the force applied with the displacement be constant?


A wall clock uses a vertical spring-mass system to measure the time. Each time the mass reaches an extreme position, the clock advances by a second. The clock gives correct time at the equator. If the clock is taken to the poles it will


A simple pendulum is constructed by hanging a heavy ball by a 5.0 m long string. It undergoes small oscillations. (a) How many oscillations does it make per second? (b) What will be the frequency if the system is taken on the moon where acceleration due to gravitation of the moon is 1.67 m/s2?


A closed circular wire hung on a nail in a wall undergoes small oscillations of amplitude 20 and time period 2 s. Find (a) the radius of the circular wire, (b) the speed of the particle farthest away from the point of suspension as it goes through its mean position, (c) the acceleration of this particle as it goes through its mean position and (d) the acceleration of this particle when it is at an extreme position. Take g = π2 m/s2.


In a simple harmonic oscillation, the acceleration against displacement for one complete oscillation will be __________.


Write short notes on two springs connected in series.


Consider two simple harmonic motion along the x and y-axis having the same frequencies but different amplitudes as x = A sin (ωt + φ) (along x-axis) and y = B sin ωt (along y-axis). Then show that

`"x"^2/"A"^2 + "y"^2/"B"^2 - (2"xy")/"AB" cos φ = sin^2 φ`

and also discuss the special cases when

  1. φ = 0
  2. φ = π
  3. φ = `π/2`
  4. φ = `π/2` and A = B
  5. φ = `π/4`

Note: when a particle is subjected to two simple harmonic motions at right angle to each other the particle may move along different paths. Such paths are called Lissajous figures.


Displacement vs. time curve for a particle executing S.H.M. is shown in figure. Choose the correct statements.

  1. Phase of the oscillator is same at t = 0 s and t = 2s.
  2. Phase of the oscillator is same at t = 2 s and t = 6s.
  3. Phase of the oscillator is same at t = 1 s and t = 7s.
  4. Phase of the oscillator is same at t = 1 s and t = 5s.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×