Advertisements
Advertisements
Question
Consider the following distribution:
Marks obtained | Number of students |
More than or equal to 0 | 63 |
More than or equal to 10 | 58 |
More than or equal to 20 | 55 |
More than or equal to 30 | 51 |
More than or equal to 40 | 48 |
More than or equal to 50 | 42 |
The frequency of the class 30 – 40 is:
Options
3
4
48
51
Solution
3
Explanation:
Marks obtained | Number of students |
0 – 10 | (63 – 58) = 5 |
10 – 20 | (58 – 55) = 3 |
20 – 30 | (55 – 51) = 4 |
30 – 40 | (51 – 48) = 3 |
40 – 50 | (48 – 42) = 6 |
50... | 42 = 42 |
Hence, frequency of the class interval 30 – 40 is 3.
APPEARS IN
RELATED QUESTIONS
Find the median of the following data by making a ‘less than ogive’.
Marks | 0 - 10 | 10-20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80-90 | 90-100 |
Number of Students | 5 | 3 | 4 | 3 | 3 | 4 | 7 | 9 | 7 | 8 |
The marks obtained by 100 students of a class in an examination are given below:
Marks | Number of students |
0 – 5 | 2 |
5 – 10 | 5 |
10 – 15 | 6 |
15 – 20 | 8 |
20 – 25 | 10 |
25 – 30 | 25 |
30 – 35 | 20 |
35 – 40 | 18 |
40 – 45 | 4 |
45 – 50 | 2 |
Draw cumulative frequency curves by using (i) ‘less than’ series and (ii) ‘more than’ series.Hence, find the median.
Write the median class of the following distribution:
Class | 0 – 10 | 10 -20 | 20- 30 | 30- 40 | 40-50 | 50- 60 | 60- 70 |
Frequency | 4 | 4 | 8 | 10 | 12 | 8 | 4 |
What is the lower limit of the modal class of the following frequency distribution?
Age (in years) | 0 - 10 | 10- 20 | 20 -30 | 30 – 40 | 40 –50 | 50 – 60 |
Number of patients | 16 | 13 | 6 | 11 | 27 | 18 |
The following frequency distribution gives the monthly consumption of electricity of 64 consumers of locality.
Monthly consumption (in units) | 65 – 85 | 85 – 105 | 105 – 125 | 125 – 145 | 145 – 165 | 165 – 185 |
Number of consumers | 4 | 5 | 13 | 20 | 14 | 8 |
Form a ‘ more than type’ cumulative frequency distribution.
Write the median class for the following frequency distribution:
Class-interval: | 0−10 | 10−20 | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 | 70−80 |
Frequency: | 5 | 8 | 7 | 12 | 28 | 20 | 10 | 10 |
Consider the following frequency distributions
Class | 65 - 85 | 85 - 105 | 105 - 125 | 125 - 145 | 145 - 165 | 165 - 185 | 185-205 |
Frequency | 4 | 5 | 13 | 20 | 14 | 7 | 4 |
The difference of the upper limit of the median class and the lower limit of the modal class is?
The following is the distribution of weights (in kg) of 40 persons:
Weight (in kg) | 40 – 45 | 45 – 50 | 50 – 55 | 55 – 60 | 60 – 65 | 65 – 70 | 70 – 75 | 75 – 80 |
Number of persons | 4 | 4 | 13 | 5 | 6 | 5 | 2 | 1 |
Construct a cumulative frequency distribution (of the less than type) table for the data above.
Form the frequency distribution table from the following data:
Marks (out of 90) | Number of candidates |
More than or equal to 80 | 4 |
More than or equal to 70 | 6 |
More than or equal to 60 | 11 |
More than or equal to 50 | 17 |
More than or equal to 40 | 23 |
More than or equal to 30 | 27 |
More than or equal to 20 | 30 |
More than or equal to 10 | 32 |
More than or equal to 0 | 34 |
Find the unknown entries a, b, c, d, e, f in the following distribution of heights of students in a class:
Height (in cm) |
Frequency | Cumulative frequency |
150 – 155 | 12 | a |
155 – 160 | b | 25 |
160 – 165 | 10 | c |
165 – 170 | d | 43 |
170 – 175 | e | 48 |
175 – 180 | 2 | f |
Total | 50 |