English

The difference of the upper limit of the median class and the lower limit of the modal class is? - Mathematics

Advertisements
Advertisements

Question

Consider the following frequency distributions

Class 65 - 85 85 - 105 105 - 125 125 - 145 145 - 165 165 - 185 185-205
Frequency 4 5 13 20 14 7 4

The difference of the upper limit of the median class and the lower limit of the modal class is?

Options

  • 0

  • 19

  • 20

  • 38

MCQ

Solution

20

Explanation:-

Class Frequency Cumulative frequency
65 - 85 4 4
85 - 105 5 9
105 - 125 13 22
125 - 145 20 42
145 - 165 14 56
165 - 185 7 63
185 - 205 4 67

Here, N = 67.

`therefore N/2=33.5,` which lies in the interval 125 - 145.

Therefore, the lower limit of the median class is 125.

The highest frequency is 20, which lies in the interval 125 - 145.

Therefore, the upper limit of modal class is 145.

So, the required difference is 145 - 125 = 20.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Statistics - Exercise 15.8 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 15 Statistics
Exercise 15.8 | Q 40 | Page 69

RELATED QUESTIONS

The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield (in kg/ha) 50 − 55 55 − 60 60 − 65 65 − 70 70 − 75 75 − 80
Number of farms 2 8 12 24 38 16

Change the distribution to a more than type distribution and draw ogive.


Find the median of the following data by making a ‘less than ogive’.

Marks 0 - 10 10-20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80-90 90-100
Number of Students 5 3 4 3 3 4 7 9 7 8

 


The table given below shows the weekly expenditures on food of some households in a locality

Weekly expenditure (in Rs) Number of house holds
100 – 200 5
200- 300 6
300 – 400 11
400 – 500 13
500 – 600 5
600 – 700 4
700 – 800 3
800 – 900 2

Draw a ‘less than type ogive’ and a ‘more than type ogive’ for this distribution.


From the following frequency, prepare the ‘more than’ ogive.

Score Number of candidates
400 – 450 20
450 – 500 35
500 – 550 40
550 – 600 32
600 – 650 24
650 – 700 27
700 – 750 18
750 – 800 34
Total 230

Also, find the median.


 The following is the cumulative frequency distribution ( of less than type ) of 1000 persons each of age 20 years and above . Determine the mean age .

Age below (in years): 30 40 50 60 70 80
Number of persons : 100 220 350 750 950 1000

The arithmetic mean of the following frequency distribution is 53. Find the value of k.

Class 0-20 20-40 40-60 60-80 80-100
Frequency 12 15 32 k 13

If the sum of all the frequencies is 24, then the value of z is:

Variable (x) 1 2 3 4 5
Frequency z 5 6 1 2

Form the frequency distribution table from the following data:

Marks (out of 90) Number of candidates
More than or equal to 80 4
More than or equal to 70 6
More than or equal to 60 11
More than or equal to 50 17
More than or equal to 40 23
More than or equal to 30 27
More than or equal to 20 30
More than or equal to 10 32
More than or equal to 0 34

The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:

Age (in years) 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 60 – 70
Number of patients 60 42 55 70 53 20

Form: More than type cumulative frequency distribution.


Given below is a cumulative frequency distribution showing the marks secured by 50 students of a class:

Marks Below 20 Below 40 Below 60 Below 80 Below 100
Number of students 17 22 29 37 50

Form the frequency distribution table for the data.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×