Advertisements
Advertisements
Question
The following is the cumulative frequency distribution ( of less than type ) of 1000 persons each of age 20 years and above . Determine the mean age .
Age below (in years): | 30 | 40 | 50 | 60 | 70 | 80 |
Number of persons : | 100 | 220 | 350 | 750 | 950 | 1000 |
Solution
Let the assumed mean A = 45 and h = 10.
Marks | Mid-Value(xi) | Frequency (fi) | `u_1 = (x_1 - 45)/10` | `f_iu_i` |
20–30 | 25 | 100 | -2 | -200 |
30–40 | 35 | 120 | -1 | -120 |
40–50 | 45 | 130 | 0 | -0 |
50–60 | 55 | 400 | 1 | 400 |
60–70 | 65 | 200 | 2 | 400 |
70–80 | 75 | 50 | 3 | 150 |
N - 1000 | `sum"f"_"i""u"_"i" = 630` |
We know that mean, `barX = "A"+"h" (1/"N" sum"f"_"i""u"_"i")`
Now, we have
N = `sum`fi = 1000, h = 10, A = 45, `sum`fi ui = - 370\]
Mean = `bar"x"` = a + h `((sum"f"_"i""u"_"i")/(sum"f"_"i"))`
= 45 + 10`(630/1000)`
= 45 + 6.3
= 51.3 years
APPEARS IN
RELATED QUESTIONS
The monthly profits (in Rs.) of 100 shops are distributed as follows:
Profits per shop: | 0 - 50 | 50 - 100 | 100 - 150 | 150 - 200 | 200 - 250 | 250 - 300 |
No. of shops: | 12 | 18 | 27 | 20 | 17 | 6 |
Draw the frequency polygon for it.
Find the median of the following data by making a ‘less than ogive’.
Marks | 0 - 10 | 10-20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80-90 | 90-100 |
Number of Students | 5 | 3 | 4 | 3 | 3 | 4 | 7 | 9 | 7 | 8 |
The following table gives the production yield per hectare of wheat of 100 farms of a village.
Production Yield (kg/ha) | 50 –55 | 55 –60 | 60 –65 | 65- 70 | 70 – 75 | 75 80 |
Number of farms | 2 | 8 | 12 | 24 | 238 | 16 |
Change the distribution to a ‘more than type’ distribution and draw its ogive. Using ogive, find the median of the given data.
The table given below shows the weekly expenditures on food of some households in a locality
Weekly expenditure (in Rs) | Number of house holds |
100 – 200 | 5 |
200- 300 | 6 |
300 – 400 | 11 |
400 – 500 | 13 |
500 – 600 | 5 |
600 – 700 | 4 |
700 – 800 | 3 |
800 – 900 | 2 |
Draw a ‘less than type ogive’ and a ‘more than type ogive’ for this distribution.
Write the modal class for the following frequency distribution:
Class-interval: | 10−15 | 15−20 | 20−25 | 25−30 | 30−35 | 35−40 |
Frequency: | 30 | 35 | 75 | 40 | 30 | 15 |
If the median of the following frequency distribution is 32.5. Find the values of f1 and f2.
The arithmetic mean of the following frequency distribution is 53. Find the value of k.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
Frequency | 12 | 15 | 32 | k | 13 |
The marks obtained by 100 students of a class in an examination are given below.
Mark | No. of Student |
0 - 5 | 2 |
5 - 10 | 5 |
10 - 15 | 6 |
15 - 20 | 8 |
20 - 25 | 10 |
25 - 30 | 25 |
30 - 35 | 20 |
35 - 40 | 18 |
40 - 45 | 4 |
45 - 50 | 2 |
Draw 'a less than' type cumulative frequency curves (ogive). Hence find the median.
Change the following distribution to a 'more than type' distribution. Hence draw the 'more than type' ogive for this distribution.
Class interval: | 20−30 | 30−40 | 40−50 | 50−60 | 60−70 | 70−80 | 80−90 |
Frequency: | 10 | 8 | 12 | 24 | 6 | 25 | 15 |
The following is the distribution of weights (in kg) of 40 persons:
Weight (in kg) | 40 – 45 | 45 – 50 | 50 – 55 | 55 – 60 | 60 – 65 | 65 – 70 | 70 – 75 | 75 – 80 |
Number of persons | 4 | 4 | 13 | 5 | 6 | 5 | 2 | 1 |
Construct a cumulative frequency distribution (of the less than type) table for the data above.