English

Define Magnetic Lines of Force - Science and Technology 1

Advertisements
Advertisements

Question

Define magnetic lines of force

Solution

The path along which a unit the North Pole moves in a magnetic field is called a magnetic line of force.

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March)

APPEARS IN

RELATED QUESTIONS

Use this law to find magnetic field due to straight infinite current carrying wire.


A rod of length l is moved horizontally with a uniform velocity 'v' in a direction perpendicular to its length through a region in which a uniform magnetic field is acting vertically downward. Derive the expression for the emf induced across the ends of the rod.


A long straight wire carries a current of 35 A. What is the magnitude of the field B at a point 20 cm from the wire?


A horizontal overhead power line carries a current of 90 A in east to west direction. What is the magnitude and direction of the magnetic field due to the current 1.5 m below the line?


Explain the term hysteresis


A steady current (I1) flows through a long straight wire. Another wire carrying steady current (I2) in the same direction is kept close and parallel to the first wire. Show with the help of a diagram how the magnetic field due to the current I1 exerts a magnetic force on the second wire. Write the expression for this force.


A straight horizontal wire of mass 10 mg and length 1.0 m carries a current of 2.0 A. What minimum magnetic field B should be applied in the region, so that the magnetic force on the wire may balance its weight?


For a circular coil of radius R and N turns carrying current I, the magnitude of the magnetic field at a point on its axis at a distance x from its centre is given by,

B = `(μ_0"IR"^2"N")/(2("x"^2 + "R"^2)^(3/2))`

(a) Show that this reduces to the familiar result for field at the centre of the coil.

(b) Consider two parallel co-axial circular coils of equal radius R, and number of turns N, carrying equal currents in the same direction, and separated by a distance R. Show that the field on the axis around the mid-point between the coils is uniform over a distance that is small as compared to R, and is given by, B = `0.72 (μ_0"NI")/"R"` approximately.

[Such an arrangement to produce a nearly uniform magnetic field over a small region is known as Helmholtz coils.]


A magnetic field set up using Helmholtz coils is uniform in a small region and has a magnitude of 0.75 T. In the same region, a uniform electrostatic field is maintained in a direction normal to the common axis of the coils. A narrow beam of (single species) charged particles all accelerated through 15 kV enters this region in a direction perpendicular to both the axis of the coils and the electrostatic field. If the beam remains undeflected when the electrostatic field is 9.0 × 10–5 V m–1, make a simple guess as to what the beam contains. Why is the answer not unique?


In SI system, permeability has the units ______.


Lorentz force is ______.

A charge q is moving with a velocity v parallel to a magnetic field B. Force on the charge due to magnetic field is ______.

In the product `vec"F" = "q" (vec"υ" xx vec"B")`

= `"q" vec"υ" xx ("B"hat"i" +"B"hat"j" + "B"_0hat"k")`

For q = 1 and `vec"υ" = 2hat"i" + 4hat"j" + 6hat"k"` and 

`vec"F" = 4hat"i" - 20hat"j" + 12hat"k"`

What will be the complete expression for `vec"B"`?


A cubical region of space is filled with some uniform electric and magnetic fields. An electron enters the cube across one of its faces with velocity v and a positron enters via opposite face with velocity – v. At this instant ______.

  1. the electric forces on both the particles cause identical accelerations.
  2. the magnetic forces on both the particles cause equal accelerations.
  3. both particles gain or loose energy at the same rate.
  4. the motion of the centre of mass (CM) is determined by B alone.

Two conducting rails are connected to a source of emf and form an incline as shown in figure. A bar of mass 50 g slides without friction down the incline through a vertical magnetic field B. If the length of the bar is 50 cm and a current of 2.5 A is provided by battery. Value of B for which the bar slide at a constant velocity ______ × 10-1 Tesla. 2 [g = 10 m/s2]


A beam of light travelling along X-axis is described by the electric field Ey = 900 sin ω(t - x/c). The ratio of electric force to magnetic force on a charge q moving along Y-axis with a speed of 3 × 107 ms-1 will be : [Given speed of light = 3 × 108 ms-1]


Write the expression for the Lorentz force on a particle of charge q moving with a velocity `vecv` in a magnetic field `vecB`. When is the magnitude of this force maximum? Show that no work is done by this force on the particle during its motion from point `vecr_1` to point `vecr_2`.


An electron is moving along positive x-axis in a magnetic field which is parallel to the positive y-axis. In what direction will the magnetic force be acting on the electron?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×