Advertisements
Advertisements
Question
Each set X, contains 5 elements and each set Y, contains 2 elements and \[\cup^{20}_{r = 1} X_r = S = \cup^n_{r = 1} Y_r\] If each element of S belong to exactly 10 of the Xr's and to eactly 4 of Yr's, then find the value of n.
Solution
It is given that each set X contains 5 elements and \[\cup^{20}_{r = 1} X_r = S\]
\[\therefore n\left( S \right) = 20 \times 5 = 100\]
But, it is given that each element of S belong to exactly 10 of the Xr's.
∴ Number of distinct elements in S =\[\frac{100}{10} = 10\] .....(1)
It is also given that each set Y contains 2 elements and \[\cup^n_{r = 1} Y_r = S\]
\[\therefore n\left( S \right) = n \times 2 = 2n\]
Also, each element of S belong to eactly 4 of Yr's.
∴ Number of distinct elements in S = \[\frac{2n}{4}\] .....(2)
From (1) and (2), we have
\[\frac{2n}{4} = 10\]
\[ \Rightarrow n = 20\]
Hence, the value of n is 20.
APPEARS IN
RELATED QUESTIONS
What universal set (s) would you propose for the following:
The set of isosceles triangles.
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
{0, 1, 2, 3, 4, 5, 6}
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
Φ
Given the sets, A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Given the sets A = {1, 3, 5}, B = {2, 4, 6} and C = {0, 2, 4, 6, 8}, the following may be considered as universal set (s) for all the three sets A, B and C?
{1, 2, 3, 4, 5, 6, 7, 8}
If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:
\[\left( A \cup B \right)' = A' \cap B'\]
If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:
\[\left( A \cap B \right)' = A'B' .\]
For any two sets A and B, prove that
A ∩ B ⊂ A
For any two sets A and B, show that the following statements are equivalent:
(i) \[A \subset B\]
(ii) \[A \subset B\]=ϕ
(iii) \[A \cup B = B\]
(iv) \[A \cap B = A .\]
For three sets A, B and C, show that \[A \subset B \Rightarrow C - B \subset C - A\]
For any two sets, prove that:
\[A \cup \left( A \cap B \right) = A\]
Find sets A, B and C such that \[A \cap B, A \cap C \text{ and } B \cap C\]are non-empty sets and\[A \cap B \cap C = \phi\]
If A and B are sets, then prove that \[A - B, A \cap B \text{ and } B - A\] are pair wise disjoint.
Using properties of sets, show that for any two sets A and B,\[\left( A \cup B \right) \cap \left( A \cap B' \right) = A\]
For any two sets of A and B, prove that:
\[B' \subset A' \Rightarrow A \subset B\]
Is it true that for any sets A and \[B, P \left( A \right) \cup P \left( B \right) = P \left( A \cup B \right)\]? Justify your answer.
Show that for any sets A and B, A = (A ∩ B) ∪ ( A - B)
For any two sets A and B, prove the following:
\[A \cap \left( A' \cup B \right) = A \cap B\]
For any two sets A and B, prove the following:
\[A \cap \left( A \cup B \right)' = \phi\]
Let A and B be two sets such that : \[n \left( A \right) = 20, n \left( A \cup B \right) = 42 \text{ and } n \left( A \cap B \right) = 4\] \[n \left( B - A \right)\]
In a group of 950 persons, 750 can speak Hindi and 460 can speak English. Find:
how many can speak English only.
In a survey it was found that 21 persons liked product P1, 26 liked product P2 and 29 liked product P3. If 14 persons liked products P1 and P2; 12 persons liked product P3 and P1 ; 14 persons liked products P2 and P3 and 8 liked all the three products. Find how many liked product P3 only.
Let A and B be two sets that \[n \left( A \right) = 16, n \left( B \right) = 14, n \left( A \cup B \right) = 25\] Then, \[n \left( A \cap B \right)\]
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ B ∪ C
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
B ∪ C ∪ D
If X and Y are subsets of the universal set U, then show that Y ⊂ X ∪ Y
If X and Y are subsets of the universal set U, then show that X ∩ Y ⊂ X
If X and Y are subsets of the universal set U, then show that X ⊂ Y ⇒ X ∩ Y = X
If A and B are subsets of the universal set U, then show that (A ∩ B) ⊂ A
Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers. Find the number of families which buy none of A, B and C