Advertisements
Advertisements
Question
एक त्रिभुज की भुजाएँ 11 cm, 12 cm और 13 cm की हैं। 12 cm लंबी भुजा के संगत शीर्षलंब की लंबाई 10.25 cm हैं।
Options
सत्य
असत्य
Solution
यह कथन सत्य है।
स्पष्टीकरण -
चूँकि त्रिभुज की भुजाएँ a = 11 सेमी, b = 12 सेमी और c = 13 सेमी हैं।
अब, अर्ध-परिधि, `s = (a + b + c)/2`
= `(11 + 12 + 13)/2`
= `36/2`
= 18 सेमी
त्रिभुज का क्षेत्रफल = `sqrt(s(s - a)(s - b)(s - c))` ...[हीरोन के सूत्र द्वारा]
= `sqrt(18(18 - 11)(18 - 12)(18 - 13))`
= `sqrt(18 xx 7 xx 6 xx 5)`
= `sqrt(3 xx 6 xx 7 xx 6 xx 5)`
= `6sqrt(3 xx 7 xx 5)`
= `6sqrt(105)`
= 6 × 10.25
= 61.5 सेमी2
∴ ΔABC का क्षेत्रफल = `1/2 xx BC xx AD` ...[∴ त्रिकोण का क्षेत्रफल = `1/2` (आधार × ऊंचाई)]
= `1/2 xx 12 xx 10.25`
= 6 × 10.25
= 61.5 सेमी2
APPEARS IN
RELATED QUESTIONS
एक पार्क चतुर्भुज ABCD के आकार का है, जिसमें ∠C = 90° है, AB = 9 मी, BC = 12 मी, CD = 5 मी और AD = 8 मी है। इस पार्क का क्षेत्रफल कितना है?
एक चतुर्भुज ABCD का क्षेत्रफल ज्ञात कीजिए, जिसमें AB = 3 सेमी, BC = 4 सेमी, CD = 4 सेमी, DA = 5 सेमी और AC = 5 सेमी हैं।
एक त्रिभुज और एक समांतर चतुर्भुज का एक ही आधार है और क्षेत्रफल भी एक ही है। यदि त्रिभुज की भुजाएँ 26 सेमी, 28 सेमी और 30 सेमी हैं तथा समांतर चतुर्भुज 28 सेमी के आधार पर स्थित है, तो उसकी संगत ऊँचाई ज्ञात कीजिए।
एक खेत समलंब के आकार का है जिसकी समांतर भुजाएँ 25 मी और 10 मी हैं। इसकी असमांतर भुजाएँ 14 मी और 13 मी हैं। इस खेत का क्षेत्रफल ज्ञात कीजिए।
एक त्रिभुजाकार बोर्ड के किनारे 6 cm, 8 cm और 10 cm लंबाईयों के हैं। इस पर 9 पैसे प्रति cm2 की दर से पेंट कराने का व्यय है
एक फ्लाईओवर की त्रिभुजाकार पार्श्व दीवारों को विज्ञापनों के लिए प्रयोग किया जाता है। दीवारों की भुजाएँ 13 m, 14 m और 15m हैं। विज्ञापनों से एक वर्ष में 2000 रु प्रति m2 की दर से आय होती है। एक कंपनी इनमें से एक दीवार को 6 महीने के लिए किराए पर लेती है। उस कंपनी ने कितना किराया दिया होगा?
एक चतुर्भुज ABCD की भुजाएँ (एक क्रम में लेने पर) 6 cm, 8 cm, 12 cm और 14 cm हैं तथा प्रथम दो भुजाओं के बीच का कोण समकोण है। इसका क्षेत्रफल ज्ञात कीजिए।
निम्नलिखित आकृति में दी हुई ऊँचाई PQ वाले समलंब PORS का क्षेत्रफल ज्ञात कीजिए।
एक मकान का निर्माण करने के लिए एक आयताकार भूखंड दिया गया, जिसकी लंबाई 40 m है तथा सामने की चौडाई 15 m है। नियमों के अनुसार, सामने और पीछे की ओर न्यूनतम 3 m चौड़ी जगह तथा प्रत्येक अन्य ओर पर न्यूनतम 2 m चौड़ी जगह छोड़नी आवश्यक है। वह अधिकतम क्षेत्र ज्ञात कीजिए जिसमें मकान का निर्माण किया जा सकता है।
50 cm × 70 cm विमाओं वाली एक आयताकार टाइल पर, निम्नलिखित आकृति में दर्शाए अनुसार एक डिज़ाइन बनाया जाता है। इस डिज़ाइन में 8 त्रिभुज हैं, जिनमें से प्रत्येक की भुजा 26 cm, 17 cm और 25 cm की हैं। डिज़ाइन का पूर्ण क्षेत्रफल ज्ञात कीजिए तथा टाइल के शेष भाग का क्षेत्रफल भी ज्ञात कीजिए।