English
Karnataka Board PUCPUC Science Class 11

For a Constant-volume Gas Thermometer, One Should Fill the Gas at - Physics

Advertisements
Advertisements

Question

For a constant-volume gas thermometer, one should fill the gas at

Options

  •  low temperature and low pressure

  •  low temperature and high pressure

  • high temperature and low pressure

  • high temperature and high pressure

MCQ

Solution

high temperature and low pressure. 

A constant-volume gas thermometer should be filled with an ideal gas in which particles don't interact with each other and are free to move anywhere, so that the thermometer functions properly. An ideal gas is only a theoretical possibility. Therefore, the gas that is filled in the thermometer should be at high temperature and low pressure, as under these conditions, a gas behaves as an ideal gas. 

shaalaa.com
Thermal Expansion
  Is there an error in this question or solution?
Chapter 1: Heat and Temperature - MCQ [Page 11]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 1 Heat and Temperature
MCQ | Q 4 | Page 11

RELATED QUESTIONS

A brass rod of length 50 cm and diameter 3.0 mm is joined to a steel rod of the same length and diameter. What is the change in length of the combined rod at 250 °C, if the original lengths are at 40.0 °C? Is there a ‘thermal stress’ developed at the junction? The ends of the rod are free to expand (Co-efficient of linear expansion of brass = 2.0 × 10–5 K–1, steel = 1.2 × 10–5 K–1).


A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8.0 kg. How much is the rise in temperature of the block in 2.5 minutes, assuming 50% of power is used up in heating the machine itself or lost to the surroundings Specific heat of aluminium = 0.91 J g–1 K–1


If mercury and glass had equal coefficients of volume expansion, could we make a mercury thermometer in a glass tube?


A system X is neither in thermal equilibrium with Y nor with Z. The systems Y and Z


Show that the moment of inertia of a solid body of any shape changes with temperature as I = I0 (1 + 2αθ), where I0 is the moment of inertia at 0°C and α is the coefficient of linear expansion of the solid.


Answer the following question.

State applications of thermal expansion.


Answer the following question.

Give an example of the disadvantages of thermal stress in practical use?


Solve the following problem.

A blacksmith fixes iron ring on the rim of the wooden wheel of a bullock cart. The diameter of the wooden rim and the iron ring are 1.5 m and 1.47 m respectively at room temperature of 27 °C. To what temperature the iron ring should be heated so that it can fit the rim of the wheel? (αiron = 1.2 × 10–5K–1).


A clock pendulum having coefficient of linear expansion. α = 9 × 10-7/°C-1 has a period of 0.5 s at 20°C. If the clock is used in a climate, where the temperature is 30°C, how much time does the clock lose in each oscillation? (g = constant)


A metal rod of cross-sectional area 3 × 10-6 m2 is suspended vertically from one end has a length 0.4 m at 100°C. Now the rod is cooled upto 0°C, but prevented from contracting by attaching a mass 'm' at the lower end. The value of 'm' is ______.

(Y = 1011 N/m2, coefficient of linear expansion = 10-5/K, g = 10m/s2)


A uniform metallic rod rotates about its perpendicular bisector with constant angular speed. If it is heated uniformly to raise its temperature slightly ______.


The radius of a metal sphere at room temperature T is R, and the coefficient of linear expansion of the metal is α. The sphere is heated a little by a temperature ∆T so that its new temperature is T + ∆T. The increase in the volume of the sphere is approximately ______.


Find out the increase in moment of inertia I of a uniform rod (coefficient of linear expansion α) about its perpendicular bisector when its temperature is slightly increased by ∆T.


Calculate the stress developed inside a tooth cavity filled with copper when hot tea at temperature of 57°C is drunk. You can take body (tooth) temperature to be 37°C and α = 1.7 × 10–5/°C, bulk modulus for copper = 140 × 109 N/m2.


A rail track made of steel having length 10 m is clamped on a raillway line at its two ends (figure). On a summer day due to rise in temperature by 20° C, it is deformed as shown in figure. Find x (displacement of the centre) if αsteel = 1.2 × 10–5/°C.


The height of mercury column measured with brass scale at temperature T0 is H0. What height H' will the mercury column have at T = 0°C. Coefficient of volume expansion of mercury is γ. Coefficient of linear expansion of brass is α ______.


A metal ball immersed in water weighs w1 at 0°C and w2 at 50°C. The coefficient of cubical expansion of metal is less than that of water. Then ______.


A disc is rotating freely about its axis. The percentage change in angular velocity of a disc if temperature decreases by 20°C is ______.

(coefficient of linear expansion of material of disc is 5 × 10-4/°C)


Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

  • Assertion A: When a rod lying freely is heated, no thermal stress is developed in it.
  • Reason R: On heating, the length of the rod increases. In light of the above statements.

choose the correct answer from the options given below:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×