English

For a Frequency Distribution, Mean, Median and Mode Are Connected by the Relation - Mathematics

Advertisements
Advertisements

Question

For a frequency distribution, mean, median and mode are connected by the relation

Options

  •  Mode = 3 Mean − 2 Median

  • Mode = 2 Median − 3 Mean

  • Mode = 3 Median − 2 Mean

  • Mode = 3 Median + 2 Mean

MCQ

Solution

The relation between mean, median and mode is

Mode = 3 Median − 2 Mean

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Statistics - Exercise 15.8 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 15 Statistics
Exercise 15.8 | Q 4 | Page 66

RELATED QUESTIONS

The following distribution gives the daily income of 50 workers of a factory.

Daily income (in Rs 100 − 120 120 − 140 140 − 160 160 − 180 180 − 200
Number of workers 12 14 8 6 10

Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.


The monthly profits (in Rs.) of 100 shops are distributed as follows:

Profits per shop: 0 - 50 50 - 100 100 - 150 150 - 200 200 - 250 250 - 300
No. of shops: 12 18 27 20 17 6

Draw the frequency polygon for it.


Find the median of the following data by making a ‘less than ogive’.

Marks 0 - 10 10-20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80-90 90-100
Number of Students 5 3 4 3 3 4 7 9 7 8

 


The given distribution shows the number of wickets taken by the bowlers in one-day international cricket matches:

Number of Wickets Less than 15 Less than 30 Less than 45 Less than 60 Less than 75 Less than 90 Less than 105 Less than 120
Number of bowlers 2 5 9 17 39 54 70 80

Draw a ‘less than type’ ogive from the above data. Find the median.


The monthly consumption of electricity (in units) of some families of a locality is given in the following frequency distribution:

Monthly Consumption (in units) 140 – 160 160 – 180 180 – 200 200 – 220 220 – 240 240 – 260 260 - 280
Number of Families 3 8 15 40 50 30 10

Prepare a ‘more than type’ ogive for the given frequency distribution.

 


What is the cumulative frequency of the modal class of the following distribution?

Class 3 – 6 6 – 9 9 – 12 12 – 15 15 – 18 18 – 21 21 – 24

 

Frequency

7 13 10 23 54 21 16

The median of a given frequency distribution is found graphically with the help of


Consider the following frequency distribution :

Class: 0-5      6-11   12-17  18-23   24-29
Frequency:   13 10 15 8 11

The upper limit of the median class is 


Change the following distribution to a 'more than type' distribution. Hence draw the 'more than type' ogive for this distribution.

Class interval: 20−30 30−40 40−50 50−60 60−70 70−80 80−90
Frequency: 10 8 12 24 6 25 15

The following is the distribution of weights (in kg) of 40 persons:

Weight (in kg) 40 – 45 45 – 50 50 – 55 55 – 60 60 – 65 65 – 70 70 – 75 75 – 80
Number of persons 4 4 13 5 6 5 2 1

Construct a cumulative frequency distribution (of the less than type) table for the data above.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×