Advertisements
Advertisements
Question
If A = `[(2, 0),(-3, 1)]` and B = `[(0, 1),(-2, 3)]` find 2A – 3B
Solution
A = `[(2, 0),(-3, 1)]`
B = `[(0, 1),(-2, 3)]`
∴ 2A – 3B = 2`[(2, 0),(-3, 1)] -3[(0, 1),(-2, 3)]`
= `[(4, 0),(-6, 2)] -[(0, 3),(-6, 9)]`
= `[(4 - 0, 0 - 3),(-6 + 6, 2 - 9)]`
= `[(4, -3),(0, -7)]`.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`6[(3),(-2)] -2[(-8),(1)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find BA
If A = `[(0, 2),(5, -2)]`, B =` [(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AI
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(z, 0),(10, 5)]` Find the values of x and y
If A = `[(1, 2),(-3, 4)], "B" = [(0, 1),(-2, 5)] and "C" = [(-2, 0),(-1, 1)]` find A(4B – 3C)
If I is a unit matrix of order 2 and M + 4I = `[(8, -3),(4, 2)]`, the matrix M is ______.
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`, the values of x, y and z are ______.