English

If A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) Are the Vertices of a Quadrilateral Abcd, Find Its Area. - Mathematics

Advertisements
Advertisements

Question

If A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) are the vertices of a quadrilateral ABCD, find its area.

Answer in Brief

Solution

It is given that A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) are the vertices of a quadrilateral ABCD.

Area of the quadrilateral ABCD = Area of ∆ABC + Area of ∆ACD

\[\text{ ar } \left( ∆ ABC \right) = \frac{1}{2}\left| x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right|\]

\[ = \frac{1}{2}\left| - 3\left[ - 7 - \left( - 8 \right) \right] + \left( - 2 \right)\left( - 8 - 5 \right) + 1\left[ 5 - \left( - 7 \right) \right] \right|\]

\[ = \frac{1}{2}\left| - 3 + 26 + 12 \right|\]

\[ = \frac{35}{2}\text{ square units } \]

\[\text{ ar } \left( ∆ ACD \right) = \frac{1}{2}\left| x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right|\]

\[ = \frac{1}{2}\left| - 3\left( - 8 - 3 \right) + 1\left( 3 - 5 \right) + 6\left[ 5 - \left( - 8 \right) \right] \right|\]

\[ = \frac{1}{2}\left| 33 - 2 + 78 \right|\]

\[ = \frac{109}{2} \text{ square units } \]

∴ Area of the quadrilateral ABCD =\[\frac{35}{2} + \frac{109}{2} = \frac{144}{2} = 72\]  square units


Hence, the area of the given quadrilateral is 72 square units.

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Co-Ordinate Geometry - Exercise 6.5 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 6 Co-Ordinate Geometry
Exercise 6.5 | Q 10 | Page 54

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that the points (3, 0), (4, 5), (-1, 4) and (-2, -1), taken in order, form a rhombus.
Also, find its area.


Find the points of trisection of the line segment joining the points:

5, −6 and (−7, 5),


The points (3, -4) and (-6, 2) are the extremities of a diagonal of a parallelogram. If the third vertex is (-1, -3). Find the coordinates of the fourth vertex.


If the point C ( - 2,3)  is equidistant form the points A (3, -1) and Bx (x ,8)  , find the value of x. Also, find the distance between BC


The midpoint of the line segment joining A (2a, 4) and B (-2, 3b) is C (1, 2a+1). Find the values of a and b.


In what ratio is the line segment joining A(2, -3) and B(5, 6) divide by the x-axis? Also, find the coordinates of the pint of division.


The base QR of a n equilateral triangle PQR lies on x-axis. The coordinates of the point Q are (-4, 0) and origin is the midpoint of the base. Find the coordinates of the points P and R.


Find the area of a quadrilateral ABCD whose vertices area A(3, -1), B(9, -5) C(14, 0) and D(9, 19).


Find the coordinates of the centre of the circle passing through the points P(6, –6), Q(3, –7) and R (3, 3).


The perpendicular distance of the P (4,3)  from y-axis is


\[A\left( 6, 1 \right) , B(8, 2) \text{ and }  C(9, 4)\] are three vertices of a parallelogram ABCD . If E is the mid-point  of DC , find the area of  \[∆\] ADE.

 

If P (x, 6) is the mid-point of the line segment joining A (6, 5) and B (4, y), find y.

 

Find the area of triangle with vertices ( ab+c) , (bc+a) and (ca+b).

 

If the points (k, 2k), (3k, 3k) and (3, 1) are collinear, then k


If (−1, 2), (2, −1) and (3, 1) are any three vertices of a parallelogram, then


The line segment joining points (−3, −4), and (1, −2) is divided by y-axis in the ratio. 


If points A (5, pB (1, 5), C (2, 1) and D (6, 2) form a square ABCD, then p =


In which quadrant does the point (-4, -3) lie?


The point R divides the line segment AB, where A(−4, 0) and B(0, 6) such that AR=34AB.">AR = `3/4`AB. Find the coordinates of R.


If the sum of X-coordinates of the vertices of a triangle is 12 and the sum of Y-coordinates is 9, then the coordinates of centroid are ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×