हिंदी

If A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) Are the Vertices of a Quadrilateral Abcd, Find Its Area. - Mathematics

Advertisements
Advertisements

प्रश्न

If A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) are the vertices of a quadrilateral ABCD, find its area.

संक्षेप में उत्तर

उत्तर

It is given that A(−3, 5), B(−2, −7), C(1, −8) and D(6, 3) are the vertices of a quadrilateral ABCD.

Area of the quadrilateral ABCD = Area of ∆ABC + Area of ∆ACD

\[\text{ ar } \left( ∆ ABC \right) = \frac{1}{2}\left| x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right|\]

\[ = \frac{1}{2}\left| - 3\left[ - 7 - \left( - 8 \right) \right] + \left( - 2 \right)\left( - 8 - 5 \right) + 1\left[ 5 - \left( - 7 \right) \right] \right|\]

\[ = \frac{1}{2}\left| - 3 + 26 + 12 \right|\]

\[ = \frac{35}{2}\text{ square units } \]

\[\text{ ar } \left( ∆ ACD \right) = \frac{1}{2}\left| x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right|\]

\[ = \frac{1}{2}\left| - 3\left( - 8 - 3 \right) + 1\left( 3 - 5 \right) + 6\left[ 5 - \left( - 8 \right) \right] \right|\]

\[ = \frac{1}{2}\left| 33 - 2 + 78 \right|\]

\[ = \frac{109}{2} \text{ square units } \]

∴ Area of the quadrilateral ABCD =\[\frac{35}{2} + \frac{109}{2} = \frac{144}{2} = 72\]  square units


Hence, the area of the given quadrilateral is 72 square units.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.5 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.5 | Q 10 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find a point on y-axis which is equidistant from the points (5, -2) and (-3, 2).


Determine the ratio in which the straight line x - y - 2 = 0 divides the line segment
joining (3, -1) and (8, 9).


Find the ratio in which the line segment joining (-2, -3) and (5, 6) is divided by x-axis Also, find the coordinates of the point of division in each case.


The line segment joining the points P(3, 3) and Q(6, -6) is trisected at the points A and B such that Ais nearer to P. If A also lies on the line given by 2x + y + k = 0, find the value of k.


In what ratio does the point (−4, 6) divide the line segment joining the points A(−6, 10) and B(3,−8)?


The line segment joining A( 2,9) and B(6,3)  is a diameter of a circle with center C. Find the coordinates of C


If the points P (a,-11) , Q (5,b) ,R (2,15)  and S (1,1). are the vertices of a parallelogram PQRS, find the values of a and b.


Find the coordinates of the points of trisection of the line segment joining the points (3, –2) and (–3, –4) ?


Find the coordinates of circumcentre and radius of circumcircle of ∆ABC if A(7, 1), B(3, 5) and C(2, 0) are given.


Show that A (−3, 2), B (−5, −5), (2,−3), and D (4, 4) are the vertices of a rhombus.

 

If the vertices of a triangle are (1, −3), (4, p) and (−9, 7) and its area is 15 sq. units, find the value(s) of p.     


Find the value of k, if the points A(7, −2), B (5, 1) and (3, 2k) are collinear.

 

What is the distance between the points (5 sin 60°, 0) and (0, 5 sin 30°)?

 

What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?

 

If the centroid of the triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then a3 b3 + c3 =


Ordinate of all points on the x-axis is ______.


The perpendicular distance of the point P(3, 4) from the y-axis is ______.


Find the coordinates of the point whose ordinate is – 4 and which lies on y-axis.


Distance of the point (6, 5) from the y-axis is ______.


Ryan, from a very young age, was fascinated by the twinkling of stars and the vastness of space. He always dreamt of becoming an astronaut one day. So, he started to sketch his own rocket designs on the graph sheet. One such design is given below :

Based on the above, answer the following questions:

i. Find the mid-point of the segment joining F and G.    (1) 

ii. a. What is the distance between the points A and C?   (2)

OR

b. Find the coordinates of the points which divides the line segment joining the points A and B in the ratio 1 : 3 internally.    (2)

iii. What are the coordinates of the point D?    (1)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×