Advertisements
Advertisements
Question
If the centroid of the triangle formed by the points (3, −5), (−7, 4), (10, −k) is at the point (k −1), then k =
Options
3
1
2
4
Solution
We have to find the unknown co-ordinates.
The co-ordinates of vertices are
A (3,-5) ; B (-7,4) ; C (10, -k)
The co-ordinate of the centroid is (k , - 1)
We know that the co-ordinates of the centroid of a triangle whose vertices are `(x_1 ,y_1) ,(x_2 , y_2) ,(x_3 ,y_3)` is-
`((x_1 + x_2 + x_3 )/3 , ( y_1 + y_2 + y_3)/ 3)`
So,
`(k , -1) = ((3-7+10)/3 ,(-5+4-k)/3)`
Compare individual terms on both the sides-
k = 2
APPEARS IN
RELATED QUESTIONS
Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.
A line intersects the y-axis and x-axis at the points P and Q respectively. If (2, –5) is the mid-point of PQ, then find the coordinates of P and Q.
Prove that the points (−2, 5), (0, 1) and (2, −3) are collinear.
In the seating arrangement of desks in a classroom three students Rohini, Sandhya and Bina are seated at A(3, 1), B(6, 4), and C(8, 6). Do you think they are seated in a line?
Show that the points A (1, 0), B (5, 3), C (2, 7) and D (−2, 4) are the vertices of a parallelogram.
In what ratio does the point (−4, 6) divide the line segment joining the points A(−6, 10) and B(3,−8)?
If the points p (x , y) is point equidistant from the points A (5,1)and B ( -1,5) , Prove that 3x=2y
If p(x , y) is point equidistant from the points A(6, -1) and B(2,3) A , show that x – y = 3
Show that the points A(3,0), B(4,5), C(-1,4) and D(-2,-1) are the vertices of a rhombus. Find its area.
Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.
Find the coordinates of the midpoints of the line segment joining
A(3,0) and B(-5, 4)
Find the ratio in which the point P(m, 6) divides the join of A(-4, 3) and B(2, 8) Also, find the value of m.
If \[D\left( - \frac{1}{5}, \frac{5}{2} \right), E(7, 3) \text{ and } F\left( \frac{7}{2}, \frac{7}{2} \right)\] are the mid-points of sides of \[∆ ABC\] , find the area of \[∆ ABC\] .
what is the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\] .
If the mid-point of the segment joining A (x, y + 1) and B (x + 1, y + 2) is C \[\left( \frac{3}{2}, \frac{5}{2} \right)\] , find x, y.
Two vertices of a triangle have coordinates (−8, 7) and (9, 4) . If the centroid of the triangle is at the origin, what are the coordinates of the third vertex?
The distance between the points (cos θ, 0) and (sin θ − cos θ) is
The line segment joining points (−3, −4), and (1, −2) is divided by y-axis in the ratio.
Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal in the drill in such a way that he is equidistant from each of the four students A, B, C and D? If so, what should be his position?
The distance of the point (–4, 3) from y-axis is ______.