Advertisements
Advertisements
Question
If the point P(x, y) is equidistant from the points A(a + b, b – a) and B(a – b, a + b). Prove that bx = ay.
Solution
P(x, y) is equidistant from the points A(a + b, b – a) and B(a – b, a + b).
∴ AP = BP
∴ `sqrt([x-(a+b)]^2+[y-(b-a)]^2)=sqrt([x-(a-b)]^2+[y-(a+b)]^2`
∴ [x-(a+b)]2+[y-(b-a)]2 = [x-(a-b)]2+[y-(a+b)]2
∴ x2-2x(a+b)+(a+b)2+y2-2y(b-a)+(b-a)2
= x2-2x(a-b)+(a-b)2+y2-2y(a+b)+(a+b)2
∴ -2x(a+b)-2y(b-a)=-2x(a-b)-2y(a+b)
∴ ax+bx+by-ay=ax-bx+ay+by
∴ 2bx=2ay
∴bx=ay ...(proved)
APPEARS IN
RELATED QUESTIONS
Find the distance between the points (0, 0) and (36, 15). Can you now find the distance between the two towns A and B discussed in Section 7.2.
Name the type of quadrilateral formed, if any, by the following point, and give reasons for your answer:
(−3, 5), (3, 1), (0, 3), (−1, −4)
If the point A(x,2) is equidistant form the points B(8,-2) and C(2,-2) , find the value of x. Also, find the value of x . Also, find the length of AB.
Find the distance between the following pair of point in the coordinate plane.
(1 , 3) and (3 , 9)
Find the distance between the following pairs of point in the coordinate plane :
(13 , 7) and (4 , -5)
The centre of a circle passing through P(8, 5) is (x+l , x-4). Find the coordinates of the centre if the diameter of the circle is 20 units.
Prove that the points (1 , 1) , (-1 , -1) and (`- sqrt 3 , sqrt 3`) are the vertices of an equilateral triangle.
Show that the points (2, 0), (–2, 0), and (0, 2) are the vertices of a triangle. Also, a state with the reason for the type of triangle.
By using the distance formula prove that each of the following sets of points are the vertices of a right angled triangle.
(i) (6, 2), (3, -1) and (- 2, 4)
(ii) (-2, 2), (8, -2) and (-4, -3).
Find a point which is equidistant from the points A(–5, 4) and B(–1, 6)? How many such points are there?