Advertisements
Advertisements
Question
Answer in brief:
In a double-slit arrangement, the slits are separated by a distance equal to 100 times the wavelength of the light passing through the slits.
- What is the angular separation in radians between the central maximum and an adjacent maximum?
- What is the distance between these maxima on a screen 50.0 cm from the slits?
Solution
Data: d = 100λ, D = 50.0 cm
The conditions for maximum in Young's experiment is given by:
d sin (θ) = n λ, n = 0, 1, 2...
the angle between the central maximum and it's adjacent can be determined by setting m equals to 1, so:
d sin (θ) = λ
θ = sin-1 `(λ/"d")`
θ = sin-1 `(λ/(100 λ))`
θ = sin-1 `(1/100)`
θ = 0.01 rad
The distance between the central axis and the first maximum is given by:
D sin θ = D`(lambda/"d")`
= (50.0 cm)`(lambda/(100 lambda))`
= 0.50 cm
APPEARS IN
RELATED QUESTIONS
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected and (b) refracted light? Refractive index of water is 1.33.
Is the colour of 620 nm light and 780 nm light same? Is the colour of 620 nm light and 621 nm light same? How many colours are there in white light?
Is it necessary to have two waves of equal intensity to study interference pattern? Will there be an effect on clarity if the waves have unequal intensity?
Light is _______________ .
The speed of light depends ____________ .
The equation of a light wave is written as \[y = A \sin\left( kx - \omega t \right).\] Here, `y` represents _______ .
An amplitude modulated (AM) radio wave bends appreciably round the corners of a 1 m × 1 m board but a frequency modulated (FM) wave only bends negligibly. If the average wavelengths of the AM and FM waves are \[\lambda_a and \lambda_f,\]
The inverse square law of intensity \[\left(\text{i.e. the intensity }\infty \frac{1}{r^2}\right)\] is valid for a ____________ .
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is water everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
Find the range of frequency of light that is visible to an average human being
\[\left( 400\text{ nm }< \lambda < 700\text{ nm}\right)\]
The wavelength of sodium light in air is 589 nm. (a) Find its frequency in air. (b) Find its wavelength in water (refractive index = 1.33). (c) Find its frequency in water. (d) Find its speed in water.
The speed of yellow light in a certain liquid is 2.4 × 108 m s−1. Find the refractive index of the liquid.
Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through it normally. The refractive index of the plate is μ.
A parallel beam of light of wavelength 560 nm falls on a thin film of oil (refractive index = 1.4). What should be the minimum thickness of the film so that it strongly reflects the light?
A parallel beam of white light is incident normally on a water film 1.0 × 10−4 cm thick. Find the wavelengths in the visible range (400 nm − 700 nm) which are strongly transmitted by the film. Refractive index of water = 1.33.
The optical path of a ray of light of a given wavelength travelling a distance of 3 cm in flint glass having refractive index 1.6 is the same as that on travelling a distance x cm through a medium having a refractive index 1.25. Determine the value of x.
Answer in brief:
The distance between two consecutive bright fringes in a biprism experiment using the light of wavelength 6000 Å is 0.32 mm by how much will the distance change if light of wavelength 4800 Å is used?
Choose the correct option:
In Young's double-slit experiment, a thin uniform sheet of glass is kept in front of the two slits, parallel to the screen having the slits. The resulting interference pattern will satisfy:
A parallel beam of green light of wavelength 550 nm passes through a slit of width 0.4 mm. The intensity pattern of the transmitted light is seen on a screen that is 40 cm away. What is the distance between the two first-order minima?
Light follows wave nature because ______
Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then ______
What is the relation between phase difference and Optical path in terms of speed of light in a vacuum?
State any four Conditions for Obtaining well–defined and Steady Interference Patterns.
Emission and absorption is best described by ______.
A ray is an imaginary line ______.
State the theories which were proposed to explain nature of light.